Pl ayStati on Support Library

PlayStation Support Library

The PlayStation support library is not a core BRender library. It provides useful support functionality on
aplatform specific basis.

Initialising the Support Library

This should be performed after BRender library initialisation.

PSG xBegi n()

Description:
Declaration:

Arguments:

Result:

Remarks:

Example:

Copyright O 1996 Argonaut Technologies Limited

Initialise the PlayStation support library.

br _pi xel map * PSG xBegi n(br ps_draw_envi ronnment* draw_env,

br ps_di spl ay_environment* di sp_env, void* primtive, br_uint_32
primtive_size, br_uint_32 flags)

br ps_draw_envi ronment * draw_env

A pointer to an array of 1 or 2 drawing environments.

br ps_di spl ay_envi ronnent * disp_env

A pointer to an array of 1 or 2 display environments.

void * primtive

A pointer to an allocated area of memory which is used as atemporary workspace for the

support library. Support library functions which require a temporary workspace are
documented accordingly.

br_uint_32 primtive_size

Size of support library primitive workspace in bytes.

br _uint_32 flags

Used to determine single or double buffering. Use PS_GFX_SI NGLE_BUFFER or
PS_GFX_DOUBLE_BUFFER.

br _pi xel map *

A pixelmap which describesthe Play Station frame buffer. Texture pagesin theframebuffer
may be sub-allocated from this pixelmap.

Thedrawing and display environments are used to redefine the current environments when
doublebufferingistaking place. Attributesof thecurrent environmentsmay bealtered during
display list traversal, although this does not ater the environment definition which is used
when the environments are switched.

/* Setup doubl e buffered environment */
brps_draw _envi ronment draw 2];

br ps_di spl ay_environnment [2];

br _pi xel map *screen;

void *primtive;

Pl ayStati on Support Library

Br i3egi n();

/* Define double buffered drawi ng environnents */
Br PSDr awkEnvi r onment Def i ne(draw, 0, 0, 320, 240);
Br PSDr awkEnvi r onnent Def i ne(draw + 1, 320, 0, 320, 240);

/* Define double buffered display environnents */
Br PSDi spl ayEnvi r onnment Def i ne(di spl ay, 320, 0, 320, 240);
Br PSDi spl ayEnvi ronnment Defi ne(di splay + 1, 0, 0, 320, 240);

screen = PSG xBegi n(draw, display, primtive, O,
PS_GFX_DOUBLE_BUFFER) ;

Support Library Functions

Once the support library has been initialised, a number of functions are available.

PSG xDoubl eBuf f er | ndexRead()

Description: Get the current double buffer index.
Declaration: br _ui nt _8 PSG xDoubl eBuf f er | ndexRead(voi d)
Result: br_uint_8
The buffer index (0 or 1) used for indexing double buffered data.

Remarks. When using adoublebuffered system, datasuch asrendering primitivesmust bearrangedin
atwo element array. The double buffer index returned by thisfunction isused to index into
the data array.

Example:
br _uint_8 db_i ndex;
brps_primpoly_f3 poly_f3[2];

db_i ndex = PSG xDoubl eBuf f er | ndexRead() ;
Br PSPr i mPol yF3Set (&pol y_f 3[db_i ndex]);

PSG xDoubl eBuf f er Cal | backSet ()

Description: Set the call-back function which isinvoked by the double buffering operation.

Declaration: ps_gf x_doubl e_buffer_cbfn * PSG xDoubl eBuf f er Cal | backSet (
ps_gf x_doubl e_buffer_cbhfn *new_chbfn)

2 Copyright O 1996 Argonaut Technologies Limited

Arguments:

Preconditions:
Result:

Remarks:

See Also:

Pl ayStati on Support Library

ps_gf x_doubl e_buffer_cbfn * new _cbfn

A pointer to anew call-back function. NULL will indicate that no call-back is used.
Between Br Begi n() & Br End() . Between PSG xBegi n() & PsG xEnd() .
ps_gf x_doubl e_buffer_cbfn *

Returns a pointer to the old call-back function.

The callback occurs after the environments have been switched, but before the display list
traversal begins. This alows users to perform some display operations before primitive
rendering takes place.

ps_gf x_doubl e_buf fer_cbfn.

PSG xDr awSyncCal | backSet ()

Description:
Declaration:

Arguments:

Preconditions:
Result:

Remarks:

See Also:

Set the call-back function which isinvoked upon termination of display list traversal.

ps_gf x_draw_sync_cbfn *
PSG xDr awSyncCal | backSet (ps_gf x_draw_sync_cbfn *new_cbf n)

ps_gf x_draw_sync_cbfn * new _cbfn

A pointer to anew call-back function. NULL will indicate that no call-back is used.
Between Br Begi n() & Br End() . Between PSG xBegi n() & PsG xEnd() .
ps_gf x_draw_sync_cbfn *

Returns a pointer to the old call-back function.

The callback occurs when the end of the display list is encountered whilst rendering.
Subsequent draw synccall-backsaremasked whil stinsidethecall-back function, sominimal
processing should be performed.

ps_gf x_draw_sync_cbfn.

PSG xVSyncCal | backSet ()

Description:
Declaration:

Arguments:

Preconditions:
Result:

Remarks:

Copyright O 1996 Argonaut Technologies Limited

Set the call-back function which isinvoked upon vertical synchronization.

ps_gf x_vsync_cbfn * PSG xVSyncCal | backSet (ps_gf x_vsync_cbhfn
*new_cbf n)

ps_gf x_vsync_cbfn * new_cbfn

A pointer to anew call-back function. NULL will indicate that no call-back is used.
Between Br Begi n() & Br End() . Between PSG xBegi n() & PsG xEnd() .
ps_gf x_vsync_cbfn *

Returns a pointer to the old call-back function.

Thecallback occursat thestart of thevertical synchronisation period. Subsequent vsync call-
backs are masked whilst inside the call-back function, so minimal processing should be
performed.

3

Pl ayStati on Support Library

See Also: ps_gf x_vsync_cbf n.

Terminating the Support Library

The support library should be terminated correctly before theallocated workspace assigned to the support
library is de-allocated.

PSG xEnd()

Description: Terminate the support library.
Declaration: voi d PSG xEnd(voi d)
Effects: Terminates the support library and releases any internal resources.
See Also: PSGF xBegi n() .

4 Copyright O 1996 Argonaut Technologies Limited

ps_gf x_doubl e_buffer_cbfn

ps_gf x _doubl e buffer cbhfn

The Call-Back Function

This type defines a call-back function which can be specified by using the function

PSG xDoubl eBuf f er Cal | backSet () . It is called when double buffered environments are being
swapped. It enablesan applicationto perform extracomputati onsafter theenvironmentshavebeen switched,
but before display list traversal takes place.

Thet ypedef

(Seepsi 0. h for precise declaration)
voi d ps_gf x_doubl e_buf fer_cbfn(br_ui nt _8 db_i ndex) Double Buffer call-back

Related Functions

For details of how to specify that adouble buffer call-back function should be called during double buffer
switching, see PSG' xDoubl eBuf f er Cal | backSet () .

Specification

CBFnDoubl eBuf f er ()

Description: Anapplication defined call-back function that iscalled during double buffer switching. The
pass through equivalent for this call-back isto do nothing.

Declaration: voi d BR_CALLBACK CBf nDoubl eBuf f er (br_ui nt _8 db_i ndex)
Arguments. br _ui nt _8 db_i ndex
Current double buffer index.

Preconditions: Doublebuffer switchingisinprogress. Theapplication call-back function hasbeen set using
PSG xDoubl eBuf f er Cal | backSet ().
Effects. Behaviour is up to the application.
Remarks. Any other BRender functions may be called from within this call-back with the following
restrictions:
Don't call the double buffer switching function.

Copyright O 1996 Argonaut Technologies Limited 5

ps_gfx_draw_sync_chbhfn

ps_gf x _draw sync_cbfn

The Call-Back Function

This type defines a call-back function which can be specified by using the function

PSG xDr awSyncCal | backSet () . It is called when the current drawing queue is empty i.e. upon
encountering the end of the display list. It enables an application to perform extra computations after the
current queue of rendering primitives has been rendered by the GPU.

Thet ypedef

(See psi 0. h for precise declaration)
voi d ps_gf x_draw_sync_cbfn(br_ui nt _8 db_i ndex) Drawing synchronization call-back

Related Functions

For details of how to specify that a drawing synchronization call-back function should be called when
drawing is completed, see PSG xDr awSyncCal | backSet () .

Specification

CBFnDr awSync()

Description: Anapplicationdefined call-back functionthat iscalled whendrawingiscompleted. Thepass
through equivalent for this call-back is to do nothing.

Declaration: voi d BR_CALLBACK CBf nDrawSync(br_ui nt_8 db_i ndex)
Arguments. br _ui nt _8 db_i ndex

Current double buffer index.

Preconditions: Drawing is complete. The application call-back function has been set using
PSG xDr awSyncCal | backSet () .

Effects. Behaviour isuptotheapplication. Further drawing synchronization call-backsareinhibited
whist inside the call-back function, so any operations should be kept to a minimum.

Remarks: Any other BRender functions may be called from within this call-back.

6 Copyright O 1996 Argonaut Technologies Limited

ps_gfx_vsync_cbfn

ps_gf x _vsync _cbhfn

The Call-Back Function

This type defines a call-back function which can be specified by using the function
PSG xVSyncCal | backSet () . It iscalled when vertical synchronization is taking place. It enables an
application to perform extra computations during the vertical retrace period at regular intervals.

Thet ypedef

(Seepsi 0. h for precise declaration)
voi d ps_gfx_vsync_cbfn(br_uint_8 db_i ndex) Vertical synchronization call-back

Related Functions

For details of how to specify that avertical synchronization call-back function should be called at the start
of vertical synchronization, see PSG xVVSyncCal | backSet () .

Specification

CBFnVSync()

Description: Anapplicationdefinedcall-back functionthatiscalled at thestart of vertical synchronization.
The pass through equivalent for this call-back isto do nothing.

Declaration: voi d BR_CALLBACK CBf nVSync(br_uint_8 db_i ndex)
Arguments. br _ui nt _8 db_i ndex
Current double buffer index.
Preconditions: The application call-back function has been set using PSG xVSyncCal | backSet () .

Effects. Behaviour isup to the application. Further vertical synchronization call-backsareinhibited
whist inside the call-back function, so any operations should be kept to a minimum.

Remarks: Any other BRender functions may be called from within this call-back.

Copyright O 1996 Argonaut Technologies Limited 7

Scene Renderi ng

Scene Rendering

The Play Station has dedicated hardware which is designed for primitive sorting hidden surface schemes. It
does not perform z buffering and the implementation of a z buffer scheme is not practical for reasons of
performance. Consult the Technical Reference Manual for details of the z sort scheme used by BRender.

Additional Functionality

The following functions are an extension of the functionality offered by the BRender z sort scheme.

Br ZsDef aul t Or der Tabl eGet ()

Description: Return a pointer to the BRender z sort default order table.
Declaration: br_order_table * BrZsDef aul t Or der Tabl eGet (voi d)
Result: br_order_table *

A pointer to the default order table. This order table is used when no user order tableis
specified.

Br ZsDef aul t Or der Tabl eCl ear ()

Description: Clear the default BRender z sort order table.
Declaration: voi d BrZsDef aul t O der Tabl eC ear (voi d)
Effects. Clear the default order table.

Br ZsCurrent Or der Tabl eGet ()

Description: Return a pointer to the current order table used for primitive insertion.
Declaration: br_order_t abl e *Br ZsDef aul t Or der Tabl eCl ear (voi d)
Result: br_order_table *

A pointer to the current order table used for primitive insertion.

Preconditions: Model or Scene rendering is being performed. A br _r ender bounds_cbf n,
br_primtive_cbfnorbr_nodel custom cbf n cal-back has been invoked.

Remarks. Thisfunctionisuseful incall-back functionstoobtainthecurrent order tabl efor userinsertion
and manipulation. Theorder tablebeing used i sdefined by the current actor or by inheritance
across a hierarchy.

8 Copyright O 1996 Argonaut Technologies Limited

Scene Renderi ng

Br ZsSceneFogSet ()

Description: Set an arbitrary environment fog colour and distance.

Declaration: br_vector2 *BrZsSceneFogSet (br _ui nt_32 col our, br_vector2
*bounds)

Preconditions: Model or Scenerenderingisnot being performed. Thisfunctionmay not becalledfromacall-
back.

Arguments. br _ui nt _32 col our

Arbitrary colour for environment fog. Local fog colours may also be used. See
br _material .

br _vector2 * bounds

First and second ordinates. Thefirst ordinate isthe near distance from the cameraalong the
negativez axis. Thisspecifiesthedistancewherethefogis0%. Thesecond ordinateisthefar
distance from the camera. This specifies the distance where the fog is 100%. These values
should be greater than zero.

Result: br_vector2 *

The bounds are returned for convenience.

Copyright O 1996 Argonaut Technologies Limited 9

br vector2s

br vector2s

The Structure

Thisisthetwo ordinate vector structure, typically used for 2D calculations on the PlayStation. Macros are
provided to allow it be used as though it were an integral type.

Thet ypedef

(See ps. h for precise declaration and ordering)

br_int_16 v[2] Ordinates (0=x, 1=y)
Members

br _int_16 v[2]

First and second ordinate. Conventionally, thefirst ordinate is the x-axis component and the second, they
axis component.

Arithmetic

Use the br _vect or 2 arithmetic macros supplied.
Seebr _vector 2.

Copy/Assign
Use the br _vect or 2 assignment and copying macros supplied.
Seebr _vector 2.

Referencing & Lifetime

Thisstructure may be freely referenced, though take careif there is potential to supply the same vector as
more than one argument to the same function.

Initialisation
Usethe br _vect or 2 macros supplied for initialisation.

Seebr _vector 2.

10 Copyright O 1996 Argonaut Technologies Limited

br vector3s

br vector 3s

The Structure

Thisisthethreeordinate vector structure, typically used for 3D calculationson the Play Station. Macrosare
provided to allow it be used as though it were an integral type.

Thet ypedef

(Seeps. h for precise declaration and ordering)

br_int_16 v[3] Ordinates (0=x, 1=y, 2=2)
Members

br _int_16 v[3]

First, second and third ordinate. Conventionally, thefirst ordinateisthex-axiscomponent, thesecond, they
axiscomponent, andthethird, thez axiscomponent. Remember that BRender hasaright handed co-ordinate
system and so, with the x axis positive to the right, and the y axis positive upwards, the z axisis therefore
positive toward you (typically, the z axis points out of the screen).

Arithmetic

Use the br _vect or 3 arithmetic macros supplied.
Seebr _vect or 3.

Copy/Assign
Use the br _vect or 3 assignment and copying macros supplied.
Seebr _vect or 3.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same vector as
more than one argument to the same function.

Initialisation
Usethe br _vect or 3 macros supplied for initialisation.

Seebr _vect or 3.

Copyright O 1996 Argonaut Technologies Limited 11

br vector2b

br vector?2b

The Structure

Thisisthe two ordinate vector structure, typically used for texture map coordinate declarations on the
PlayStation. Macros are provided to allow it be used as though it were an integral type.

Thet ypedef

(See ps. h for precise declaration and ordering)

br_uint_8 v[2] Ordinates (0=u, 1=v)
Members

br_uint_8 v[2]

First and second ordinate. Conventionally, the first ordinate is the u component, and the second, the v
component. The ordinates specify an offset within one specific texture page in the frame buffer.

Arithmetic

Use the br _vect or 2 arithmetic macros supplied.
Seebr _vector 2.

Copy/Assign
Use the br _vect or 2 assignment and copying macros supplied.
Seebr _vector 2.

Referencing & Lifetime

Thisstructure may be freely referenced, though take careif there is potential to supply the same vector as
more than one argument to the same function.

Initialisation
Usethe br _vect or 2 macros supplied for initialisation.

Seebr _vector 2.

12 Copyright O 1996 Argonaut Technologies Limited

br vector3b

br vector3b

The Structure

Thisisthe three ordinate vector structure, typically used for RGB colour declarations on the Play Station.
Macros are provided to allow it be used as though it were an integral type.

Thet ypedef

(Seeps. h for precise declaration and ordering)

br_uint_8 v[3] Ordinates (0=r, 1=g, 2=b)
Members

br uint_8 v[3]

First, second and third ordinate. Conventionally, thefirst ordinateisthered (r) component, the second, the
green(g) component, andthethird theblue (b) component. Theordinatesspecify an RGB triplewhichdefine
apoint in the RGB colour space.

Arithmetic

Use the br _vect or 3 arithmetic macros supplied.
Seebr _vect or 3.

Copy/Assign
Use the br _vect or 3 assignment and copying macros supplied.
Seebr _vect or 3.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same vector as
more than one argument to the same function.

Initialisation
Usethe br _vect or 3 macros supplied for initialisation.

Seebr _vect or 3.

Copyright O 1996 Argonaut Technologies Limited 13

br vector4b

br vector4b

The Structure

Thisisthefour ordinatevector structure, typically used for RGB col our declarationsfor rendering primitives
on the PlayStation. Macros are provided to allow it be used as though it were an integral type.

Thet ypedef

(See ps. h for precise declaration and ordering)

br_uint_8 v[4] Ordinates (0=r, 1=g, 2=h, 3=code)
Members

br_uint_8 v[4]

First, second, third and fourth ordinate. Conventionally, the first ordinate is the red (r) component, the
second, the green (g) component, the third the blue (b) component, and the fourth, the rendering primitive
code component. The ordinates specify an RGB triple which define apoint in the RGB col our space and the
type of primitive to be rendered by the GPU.

Arithmetic

Use the br _vect or 4 arithmetic macros supplied.
Seebr _vector4.

Copy/Assign
Use the br _vect or 4 assignment and copying macros supplied.
Seebr _vector4.

Referencing & Lifetime

Thisstructure may be freely referenced, though take careif there is potential to supply the same vector as
more than one argument to the same function.

Initialisation
Usethe br _vect or 4 macros supplied for initialisation.

Seebr _vector4.

14 Copyright © 1996 Argonaut Technologies Limited

brps_primtag

brps _primtag

The Structure

This structure is a header description for a GPU rendering primitive on the PlayStation.

Thet ypedef

(Seeps. h for precise declaration and ordering)
br_uint_32 addr: 24
br_uint_32 len:8
Members

br uint 32 addr: 24

Thisisthelow 24 bits of a32 bit pointer to arendering primitiveinadisplay list. An order tableisalist of
primitives linked by br ps_pri m t ag members.

br _uint _32 len:8

Thisisthelength of arendering primitive which containsthebr ps_pri m_t ag structure in 32 bit units.
Primitives may be merged to form larger primitive packets which enhances the performance of the display
list traversal. The maximum size of a primitive packet in adisplay list is 16 units.

Copy/Assign

Usecopy by structure assignment freely, although pointer references must beresolved to avoid the creation
of circular display lists as this will result in a GPU timeout.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Macros for Sandard Operations

Br PSPri mAddr Set (p, addr ess)

Assign address to the addr member of the rendering primitive or br ps_pri m t ag
structure.

Br PSPri mLenSet (p, | engt h)

Assignlengthtothelen member of therendering primitiveor br ps_pri m_t ag structure.
Thelength is expressed in 32 bit units.

Copyright O 1996 Argonaut Technologies Limited 15

brps_primtag

Referencing & Lifetime

Thisstructuremay befreely referenced. A rendering primitiveheader withlength zero may beused asablank
entry in an order table. A simple description of an order tableisan array of br ps_pri m_t ag with length
zero.

Macros for Standard Operations
Br PSPri mAddr Get (p)

Returnthelow 24 bitsof theaddress of thenext primitive pointed by thebr ps_pri m t ag
header in adisplay list.
Br PSPri nLenGet ()

Returnthelengthin 32 bit unitsof therendering primitivecontainingthebr ps_pri m t ag
structure. Thisincludesthe size of the br ps_pri m_t ag structure.

Br PSPr i mNext (p)

Return the next primitive in adisplay list.
Br PSPri m sEnd(p)

Return a binary condition flag indicating if the primitive is at the end of a display list.
Br PSPri mAdd(p, primtive)

Assign the address of primitive to the addr member of p.
Br PSPr i niler m nat e(p)

Mark this primitive as the end of adisplay list.
Br PSPrinCat (p, prinmitive)

Join the display list headed by primitive to the display list with the tail p.
Br PSPri mverge(p, primtive)

Mergeprimitivewith ptoformasingleprimitivepacket. Themaximumlength of arendering
primitive is 16 units. A length greater than thiswill cause a GPU error.

Macros for General Primitive Operations

16 Copyright O 1996 Argonaut Technologies Limited

brps_primtag

Br PSPri mrPageSet (p, type, abr, x, vy)

Set the tpage member of the primitive pointed to by p.
type

0: 4 bit indexed

1: 8 bit indexed

2: 16 hit direct colour
abr (semi-translucency rate)

0: 0.5 back x 0.5 front
1 1.0 back x 1.0 front
2 0.5 back x 1.0 front
3 -1.0 back x 1.0 front
X,y

Offset of texture pagewithinframebuffer. X islimited to 64 pixel boundaries, y islimited to
256 pixel boundries.

Br PSPri nCl ut Set (p, X, V)

Set the clut member of the primitive pointed to by p.
X,y
Offset of clut within frame buffer. X islimited to 64 pixel boundaries.

Br PSPri nSemi TransSet (p, abe)

Example:

Set the semi-translucency flag of the primitive pointed to by p.
abe (semi-translucency flag)
0: Opague, 1: Semi-translucent.

This macro must be used after the rendering primitive has been initialised.

brps_primpoly_f3 poly_f3;

Br PSPr i mPol yF3Set (&poly _f3);
Br PSPri nSem TransSet (&pol y_f3, 1);

Br PSPri nShadeTexSet (p, tge)

Example:

Set theshadeflag of theprimitivepointedto by p. If shading isdisabled, thebrightnessvalues
of the rendering primitive are ignored and only the texture colour value is used.

t ge
0: Shaded, 1: Not shaded

This macro must be used after the rendering primitive has been initialised.

Copyright O 1996 Argonaut Technologies Limited 17

brps_primtag

brps_primpoly f3 poly gts3;

Br PSPr i nmPol yF3Set (&pol y_gt 3) ;
Br PSPr i nShadeTexSet (&poly_gt3, 1);

Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macros for Standard Operations
Br PSPri mAddr Set (p, address)

Set the addr member of arendering primitive or br ps_pri m t ag structure.
Br PSPri nLenSet (p, |ength)

Set the len member of arendering primitive or br ps_pri m_t ag structure.

18 Copyright O 1996 Argonaut Technologies Limited

brps_rectangl e

brps _rectangl e

The Structure

This structure is a description of arectangular region of the frame buffer on the Play Station.

Thet ypedef

(Seeps. h for precise declaration and ordering)
br_uint_16 X

br_uint_16 y

br_uint_16 w

br_uint_16 h

Related Macros
See Br PSDr awEnvi r onnent Def i ne(), Br PSDi spl ayEnvi r onment Def i ne() .

Related Structures
Seebr ps_draw_envi ronment, br ps_di spl ay_envi ronnent .

Members

br _int_16 X,y

These members indicate an offset which is the top left of arectangular region within the frame buffer in
pixels. Neither negative valuesor those exceeding the size of theframebuffer (1024x512) may be specified.

br _int_16 w, h

These membersindicate thewidth and height of the rectangular regionin pixels. Neither negative values or
those exceeding the size of the frame buffer (1024x512) may be specified.

Copy/Assign

Use copy by structure assignment freely.

Referencing & Lifetime

This structure may be freely referenced.

Initialisation

This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation

Copyright O 1996 Argonaut Technologies Limited 19

brps_rectangl e

Br PSRect angl eSet (r, x,y, w, h)

Assign members of br ps_r ect angl e structure pointed to by r.

20 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly_f3

brps primpoly f3

The Structure
This structure describes a flat shaded triangle rendering primitive for the PlayStation.

Thet ypedef

(Seeps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

br_vector2s v2

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures
Seebrps_primtag,brps_primpoly f4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

brps_draw_environmentBrightness of colour components of flat shaded polygon and primitive code
identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s vO0,vl,v2

Vertex coordinates of triangle.

Copyright O 1996 Argonaut Technologies Limited 21

brps_primpoly_f3

See Br PSPri n\ert ex0Set (), Br PSPri mVert ex1Set (), Br PSPri mVertex2Set ().

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nmPol yF3Set (p)

Set code identifier and header length members.

22 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly f4

brps primpoly f4

The Structure
This structure describes a flat shaded quadrilateral rendering primitive for the PlayStation.

Thet ypedef

(Seeps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

br_vector2s v2

br_vector2s v3

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Structures
Seebrps_primtag,brps_primpoly f3,brps_primtile,brps_primtile_1,

brps primtile_8,brps_primtile_16.
Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of flat shaded polygon and primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO,v1,v2,v3

Copyright O 1996 Argonaut Technologies Limited 23

brps_primpoly f4

Vertex coordinates of quadrilateral.

See Br PSPri n\ert ex0Set (), BrPSPri nVertex1Set (), Br PSPri mVertex2Set (),
Br PSPri mert ex3Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nmPol yF4Set (p)

Set code identifier and header length members.

24 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly_g3

brps _primpoly g3

The Structure

This structure describes a gouraud shaded triangle rendering primitive for the PlayStation.

Thet ypedef

(Seeps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector4b col ourl Ordinates (O=r, 1=g, 2=h)
br_vector2s vl

br_vector4b col our2 Ordinates (0=r, 1=g, 2=h)
br_vector2s v2

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri niNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_primpoly_g4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO, col our 1, col our2

Brightness of colour components of verticesfor gouraud shading. Thefourth ordinate of col our 0 contains
the primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set (), Br PSPr i nCol our 1Set (), Br PSPri nCol our 2Set ().

br vector2s vO0,vl,v2

Copyright O 1996 Argonaut Technologies Limited 25

brps_primpoly_g3

Vertex coordinates of triangle.

See Br PSPri m\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPr i mPol yG3Set (p)

Set code identifier and header length members.

26 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly g4

brps primpoly g4

The Structure
This structure describes a gouraud shaded quadrilateral rendering primitive for the PlayStation.

Thet ypedef

(Seeps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector4b col ourl Ordinates (O=r, 1=g, 2=h)
br_vector2s vl

br_vector4b col our2 Ordinates (0=r, 1=g, 2=h)
br_vector2s v2

br_vector4b col our3 Ordinates (O=r, 1=g, 2=h)
br_vector2s v3

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_primpoly_ g3.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO, col our 1, col our 2, col our3

Brightness of colour components of verticesfor gouraud shading. Thefourth ordinate of col our 0 contains
the primitive code identifier.

Copyright O 1996 Argonaut Technologies Limited 27

brps_primpoly g4

Seebr _vect or 4b, Br PSPri nCol our 0Set (), Br PSPri mCol our 1Set (), Br PSPr i nCol our 2Set (),
Br PSPr i mCol our 3Set () .

br vector2s vO0,vl,v2,v3

Vertex coordinates of quadrilateral.

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set (),
Br PSPri mert ex3Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri mPol yASet (p)

Set code identifier and header length members.

28 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly ft3

brps primpoly ft3

The Structure
This structure describes a flat shaded texture mapped triangle rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br _vector2b map0 Ordinates (0=u, 1=v)
br_uint_16 clut

br_vector2s vl

br_vector2b mapl Ordinates (0=u, 1=v)
br_uint_16 t page

br_vector2s v2

br_vector2b map2 Ordinates (0=u, 1=v)
Related Functions

Order Tables

Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures
Seebrps_primtag,brps_primpoly ft4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Copyright O 1996 Argonaut Technologies Limited 29

brps_primpoly ft3

Brightness of colour components of flat shaded triangle. The fourth ordinate of col our 0 contains the
primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s v0,vl,v2

Vertex coordinates of triangle.

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set () .
br _vector2b mapO, mapl, map2

Texture map coordinates of triangle within texture page.

Seebr _vect or 2b, Br PSPri mvap3Set () .

br uint 16 cl ut

Clut identifier. Thisidentifier determines the offset of the clut within the frame buffer for indexed texture
pages.

See Br PSPri nCl ut Set () .
br uint 16 tpage

Texturepageidentifier. Thisidentifier determinesthepixel depth of thetexturepage, theoffset of thetexture
page within the frame buffer and the translucency rate.

See Br PSPr i niTPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nPol yFT3Set (p)

Set code identifier and header length members.

30 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly_ft4

brps primpoly ft4

The Structure
Thisstructure describes aflat shaded texture mapped quadrilateral rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br _vector2b map0 Ordinates (0=u, 1=v)
br_uint_16 clut

br_vector2s vl

br_vector2b mapl Ordinates (0=u, 1=v)
br_uint_16 t page

br_vector2s v2

br_vector2b map2 Ordinates (0=u, 1=v)
br_vevtor2s v3

br_vector2b map3 Ordinates (0=u, 1=v)

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), Br PSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag,brps_primpoly ft3,brps_primsprite,brps_primsprite_8,
brps_primsprite_16.

Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

Copyright O 1996 Argonaut Technologies Limited 31

brps_primpoly ft4

br _vector4b col ourO

Brightness of colour components of flat shaded triangle. The fourth ordinate of col our 0 contains the
primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .
br vector2s vO0,vl,v2,v3

Vertex coordinates of quadrilateral.

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set (),
Br PSPri mert ex3Set () .

br _vector2b mapO0, napl, map2, map3
Texture map coordinates of quadrilateral within texture page.

Seebr _vect or 2b, Br PSPri mvap4Set () .

br uint 16 cl ut

Clut identifier. Thisidentifier determines the offset of the clut within the frame buffer for indexed texture
pages.

See Br PSPri nCl ut Set () .
br uint 16 tpage

Texturepageidentifier. Thisidentifier determinesthepixel depth of thetexturepage, theoffset of thetexture
page within the frame buffer and the translucency rate.

See Br PSPr i niTPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nPol yFT4Set (p)

Set code identifier and header length members.

32 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly _gt3

brps primpoly gt3

The Structure
This structure describes a gouraud shaded texture mapped triangle rendering primitive for the Play Station.

Thet ypedef

(Seeps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br _vector2b map0 Ordinates (0=u, 1=v)
br_uint_16 clut

br_vector4b col ourl Ordinates (0=r, 1=g, 2=b)
br_vector2s vl

br _vector2b mapl Ordinates (0=u, 1=v)
br_uint_16 t page

br _vector4b col our2 Ordinates (0=r, 1=g, 2=b)
br_vector2s v2

br_vector2b map2 Ordinates (0=u, 1=v)

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_primpoly_gt4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO, col our 1, col our 2

Copyright O 1996 Argonaut Technologies Limited 33

brps_primpoly gt3

Brightness of colour components of verticesfor gouraud shading. Thefourth ordinate of col our 0 contains
the primitive code identifier.

See br _vect or 4b, Br PSPri nCol our 0Set (), Br PSPri nCol our 1Set (), Br PSPri nCol our 2Set () .

br vector2s v0,vl,v2

Vertex coordinates of triangle.

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set () .
br _vector2b mapO, mapl, map2

Texture map coordinates of triangle within texture page.

Seebr _vect or 2b, Br PSPri mvap3Set () .

br uint 16 cl ut

Clut identifier. Thisidentifier determines the offset of the clut within the frame buffer for indexed texture
pages.

See Br PSPri nCl ut Set () .
br uint 16 tpage

Texturepageidentifier. Thisidentifier determinesthepixel depth of thetexturepage, theoffset of thetexture
page within the frame buffer and the translucency rate.

See Br PSPr i niTPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPr i nPol yGT3Set (p)

Set code identifier and header length members.

34 Copyright O 1996 Argonaut Technologies Limited

brps_primpoly_gt4

brps primpoly gt4

The Structure

This structure describes a gouraud shaded texture mapped quadrilateral rendering primitive for the
PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br _vector2b map0 Ordinates (0=u, 1=v)
br_uint_16 clut

br_vector4b col ourl Ordinates (0=r, 1=g, 2=b)
br_vector2s vl

br _vector2b mapl Ordinates (0=u, 1=v)
br_uint_16 t page

br _vector4b col our2 Ordinates (0=r, 1=g, 2=b)
br_vector2s v2

br_vector2b map2 Ordinates (0=u, 1=v)
br_vector4b col our3 Ordinates (0=r, 1=g, 2=b)
br_vector2s v2

br_vector2b map2 Ordinates (0=u, 1=v)

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures
Seebrps_primtag, brps_primpoly_gt3.

Members
brps primtag tag

Copyright O 1996 Argonaut Technologies Limited 35

brps_primpoly _gt4

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO, col our 1, col our2

Brightness of colour components of verticesfor gouraud shading. Thefourth ordinate of col our 0 contains
the primitive code identifier.

Seebr _vect or 4b, Br PSPri nmCol our 0Set (), Br PSPri nCol our 1Set (), Br PSPri nmCol our 2Set (),
Br PSPri mCol our 3Set () .

br vector2s v0,vl,v2

Vertex coordinates of quadrilateral.

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set (),
Br PSPri nVer t ex3Set () .

br _vector2b mapO0, mapl, nap2
Texture map coordinates of quadrilateral within texture page.

Seebr _vect or 2b, Br PSPri mvap4Set () .

br uint 16 cl ut

Clut identifier. Thisidentifier determines the offset of the clut within the frame buffer for indexed texture
pages.

See Br PSPri nCl ut Set () .

br uint 16 tpage

Texturepageidentifier. Thisidentifier determinesthepixel depth of thetexturepage, theoffset of thetexture
page within the frame buffer and the translucency rate.

See Br PSPr i niTPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation

This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation

36 Copyright O 1996 Argonaut Technologies Limited

Br PSPri nPol yGT4Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited

brps_primpoly gt4

37

brps primline_f2

brps primline f2

The Structure

This structure describes a flat shaded non-connecting line rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures

Seebrps_primtag,brps_primline f3.brps_primline_f4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of flat shaded non-connected line and primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s v0, vl

Vertex coordinates of line. A line is drawn connecting (v0.v[0], vO.v[1]) to (v1.v[0Q], v1.v[1]).

See Br PSPri mer t ex0Set (), Br PSPri nVertex1Set ().

38 Copyright O 1996 Argonaut Technologies Limited

brps_ primline_f2

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi neF2Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 39

brps_ primline_f3

brps primline f3

The Structure

Thisstructure describes aflat shaded two segment connecting line rendering primitive for the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

br_vector2s v2

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures
Seebrps_primtag,brps_primline_f2.brps_primline_f4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of flat shaded two segment connected line and primitive code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s v0,vl,v2

Vertex coordinates of line. A lineis drawn connecting (v0.v[0], vO.v[1]) to (v1.v[0], v1.v[1]) to (v2.v[(],
v2.v[1]).

40 Copyright O 1996 Argonaut Technologies Limited

brps_ primline_f3

See Br PSPri m\ert ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set ().

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.

Initialisation

This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi neF3Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited

41

brps primline_f4

brps primline f4

The Structure

Thisstructuredescribesaflat shaded three segment connecting linerendering primitivefor the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

br_vector2s v2

br_vector2s v3

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures

Seebrps_primtag,brps_primline f2.brps_primline_f3.
Members

brps _primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of flat shaded three segment connected line and primitive codeidentifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s vO0,vl,v2,v3

42 Copyright O 1996 Argonaut Technologies Limited

brps primline_f4

Vertex coordinates of line. A lineisdrawn connecting (v0.v[0], vO.v[1]) to (v1.v[0], v1.v[1]) to (v2.v[(],
v2.v[1]) to (v3.v[(Q], v3.v[1]).

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set (),
Br PSPri mert ex3Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi neF4Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 43

brps_primline_g2

brps primline g2

The Structure

This structure describes a gouraud shaded non-connecting line rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector4b col ourl Ordinates (0=r, 1=g, 2=h)
br_vector2s vl

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures
Seebrps_primtag,brps_primline_g3.brps_primline_g4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br vector4b col ourO, col ourl

Brightness of colour components of vertices for gouraud shaded non-connected line and primitive code
identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set (), Br PSPri nCol our 1Set ().

br vector2s v0, vl

Vertex coordinates of line. A line is drawn connecting (v0.v[0], vO.v[1]) to (v1.v[0Q], v1.v[1]).

44 Copyright O 1996 Argonaut Technologies Limited

brps_primline_g2

See Br PSPri mert ex0Set (), BrPSPri nVertex1Set ().

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.

Initialisation

This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi ne&2Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited

45

brps_primline_g3

brps primline g3

The Structure

This structure describes a gouraud shaded two segment connecting line rendering primitive for the
PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector4b col ourl Ordinates (0=r, 1=g, 2=h)
br_vector2s vl

br_vector4b col our2 Ordinates (0=r, 1=g, 2=h)
br_vector2s v2

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures
Seebrps_primtag,brps_primline_g2.brps_primline_g4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO, col our 1, col our 2

Brightness of colour components of vertices of gouraud shaded two segment connected line and primitive
code identifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set (), Br PSPri nCol our 1Set (), Br PSPri nCol our 2Set () .

46 Copyright O 1996 Argonaut Technologies Limited

brps_primline_g3

br vector2s vO0,vl,v2

Vertex coordinates of line. A lineisdrawn connecting (v0.v[0], vO.v[1]) to (v1.v[0], v1.v[1]) to (v2.v[(],
v2.v[1]).

See Br PSPri m\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi neG3Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 47

brps_primline_g4

brps primline g4

The Structure

Thisstructuredescribesaflat shaded three segment connecting linerendering primitivefor the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_vector2s vl

br_vector2s v2

br_vector2s v3

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Structures
Seebrps_primtag,brps_primline_g2.brps_primline_g3.
Members

brps _primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of flat shaded three segment connected line and primitive codeidentifier.

Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br vector2s vO0,vl,v2,v3

48 Copyright O 1996 Argonaut Technologies Limited

brps_primline_g4

Vertex coordinates of line. A lineisdrawn connecting (v0.v[0], vO.v[1]) to (v1.v[0], v1.v[1]) to (v2.v[(],
v2.v[1]) to (v3.v[(Q], v3.v[1]).

See Br PSPri n\er t ex0Set (), Br PSPri nVert ex1Set (), Br PSPri mVert ex2Set (),
Br PSPri mert ex3Set () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nLi neF4Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 49

brps_primsprite

brps primsprite

The Structure

This structure describes an arbitrary width sprite rendering primitive for the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector2b map0 Ordinates (0=u, 1=v)

br_uint_16 clut Only used for 4/8 bit index texture pages
br_int_16 w

br_int_16 h

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primsprite _8,brps_primsprite_16,

brps_primpoly ft4.
Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of sprite and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

50 Copyright O 1996 Argonaut Technologies Limited

brps_primsprite

br _vector2s vO
Position of sprite.

See Br PSPri nVer t ex0Set () .
br _vector2b mapO

Position of sprite texture within the current texture page. Thefirst ordinate (u) must be an even value. The
brps_pri m spri t e structure has no texture page member so the current texture page (the texture page
last specified by arendering primitive) isused. To select atexture page, mergethebr ps_pri m sprite
structure with abr ps_pri m dr aw_nopde structure. Alternatively useabr ps_primpoly ft4
primitive in place of the sprite, however a sprite is rendered faster than a polygon.

See Br PSPr i mvapOSet () .
See also br ps_pri m draw_node, Br PSPri mver ge() .

br _uint_16 cl ut

Position of the clut to use with the current texture page within the frame buffer. Thisclut isonly used when
the current texture page is specified as 4/8 bit indexed.

See Br PSPri nCl ut Set (), Br PSPri nirPageSet () .
br _int_16 w, h

These specify the width and height of the sprite primitive. The width must be an even number.

See Br PSPri mAHSet () , Br PSPr i nivapWHSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nSpriteSet (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 51

brps_primsprite_8

brps primsprite 8

The Structure

This structure describes an 8x8 pixel sprite rendering primitive for the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector2b map0 Ordinates (0=u, 1=v)

br_uint_16 clut Only used for 4/8 bit index texture pages

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primsprite,brps_primsprite_16,brps_primpoly_ ft4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of sprite and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

See Br PSPri nVer t ex0Set () .

52 Copyright O 1996 Argonaut Technologies Limited

brps_primsprite_8

br _vector2b mapO

Position of sprite texture within the current texture page. Thefirst ordinate (u) must be an even value. The
brps_pri m spri t e structure has no texture page member so the current texture page (the texture page
last specified by arendering primitive) isused. To select atexture page, mergethebr ps_pri m sprite
structure with abr ps_pri m dr aw_nopde structure. Alternatively useabr ps_primpoly ft4
primitive in place of the sprite, however a sprite is rendered faster than a polygon.

See Br PSPr i mvapO0Set () .
See also br ps_pri m draw_node, Br PSPri mver ge() .

br _uint_16 cl ut

Position of the clut to use with the current texture page within the frame buffer. Thisclut isonly used when
the current texture page is specified as 4/8 bit indexed.

See Br PSPri nCl ut Set (), Br PSPri mrPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nSprit e8Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 53

brps primsprite_16

brps primsprite 16

The Structure

This structure describes an 16x16 pixel sprite rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

br_vector2b map0 Ordinates (0=u, 1=v)

br_uint_16 clut Only used for 4/8 bit index texture pages

Related Functions

Order Tables
Seebr _order _table.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primsprite,brps_primsprite_8,brps_primpoly ft4.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of sprite and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

See Br PSPri nVer t ex0Set () .

54 Copyright O 1996 Argonaut Technologies Limited

brps primsprite_16

br _vector2b mapO

Position of sprite texture within the current texture page. Thefirst ordinate (u) must be an even value. The
brps_pri m spri t e structure has no texture page member so the current texture page (the texture page
last specified by arendering primitive) isused. To select atexture page, mergethebr ps_pri m sprite
structure with abr ps_pri m dr aw_nopde structure. Alternatively useabr ps_primpoly ft4
primitive in place of the sprite, however a sprite is rendered faster than a polygon.

See Br PSPr i mvapO0Set () .
See also br ps_pri m draw_node, Br PSPri mver ge() .

br _uint_16 cl ut

Position of the clut to use with the current texture page within the frame buffer. Thisclut isonly used when
the current texture page is specified as 4/8 bit indexed.

See Br PSPri nCl ut Set (), Br PSPri mrPageSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nSpritel6Set(p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 55

brps_primtile

brps primtile

The Structure

This structure describes an arbitrary width flat colour tile rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s v0

br_int_16 w

br_int_16 h

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primtile_1,brps primtile_8, brps_ primtile_ 16,

brps_primpoly f4.
Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of tile and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

56 Copyright O 1996 Argonaut Technologies Limited

brps_primtile

See Br PSPri nVer t ex0Set () .

br _int_16 w, h

These specify the width and height of the sprite primitive. The width must be an even number.

See Br PSPr i mAHSet () .

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPr i nili | eSet (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 57

brps primtile_1

brps primtile 1

The Structure

This structure describes a 1x1 pixel flat colour tile rendering primitive for the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primtile,brps primtile_8, brps_ primtile_16,

brps_primpoly f4.
Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of tile and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

See Br PSPri nVer t ex0Set () .

58 Copyright O 1996 Argonaut Technologies Limited

brps primtile_1

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nili | elSet (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 59

brps primtile_8

brps primtile 8

The Structure

This structure describes a 8x8 pixel flat colour tile rendering primitive for the Play Station.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures

Seebrps_primtag,brps_primtile,brps primtile_1, brps_primtile_16,
brps_primpoly f4.

Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of tile and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

See Br PSPri nVer t ex0Set () .

60 Copyright O 1996 Argonaut Technologies Limited

brps_ primtile_8

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nili | e8Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 61

brps primtile_16

brps primtile 16

The Structure

This structure describes a 16x16 pixel flat colour tile rendering primitive for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)

brps_primtag tag

br_vector4b col our0 Ordinates (0=r, 1=g, 2=h, 3=code)
br_vector2s vO0

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPri nCat (), Br PSPri mNext (), Br PSPri niTer mi nate() .

Related Sructures
Seebrps_primtag,brps_primtile,brps primtile_1, brps_ primtile_8,

brps_primpoly f4.
Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _vector4b col ourO

Brightness of colour components of tile and primitive code identifier.
Seebr _vect or 4b, Br PSPri nCol our 0Set () .

br _vector2s vO

Position of sprite.

See Br PSPri nVer t ex0Set () .

62 Copyright O 1996 Argonaut Technologies Limited

brps primtile_16

Copy/Assign

Use copy by structure assignment freely.

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation or by member initialisation.

Macro for Sandard Initialisation
Br PSPri nili | e1l6Set (p)

Set code identifier and header length members.

Copyright O 1996 Argonaut Technologies Limited 63

br ps_pri m.draw_node

brps_primdraw node

The Structure

Thisstructure describes arendering control primitive for the PlayStation. It isused to alter attributes of the
current drawing environment (state of GPU).

Thet ypedef

(See ps. h for precise declaration and ordering)
brps_primtag tag

br_uint_32 code[2] Reserved

Related Functions

Order Tables
Seebr _order _table.

Related Macros
PlayStation Rendering Primitives
See Br PSPri mAdd(), BrPSPrintCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_primtexture_w ndow, brps_draw envi ronnent,
brps_pri m environnent.

Members
brps _primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitivein the display list and
length of rendering primitive in 32 bit units.

br _uint_32 code[2]

Primitive data in bit fields.

Copy/Assign

Use copy by structure assignment freely.

64 Copyright O 1996 Argonaut Technologies Limited

br ps_pri m.draw_node

Access & Maintenance

Do not modify members while display list traversal is being performed.

Initialisation

This structure isinitialised by rendering primitive initialisation.

Function for Sandard Initialisation

Br PSPr i nDr awivbdeSet ()

Description:
Declaration:

Arguments:

Remarks:
Example:

Define a GPU draw mode rendering control primitive

voi d Br PSPri nDr awodeSet (brps_pri m draw_node* dm br_int_32

di splay, br_int_32 dither, br_int_32 tpage, brps_rectangle*
rect)

brps_pri m.draw_nmode * dm

A pointer to the destination draw mode primitive.

br _int _32 displ ay

Flag to control drawing to display area. The current drawing area need not always be the

current display areato enabledoublebuffering. Thisflag enablesGPU drawingtothecurrent
display area. 0: Off 1: On.

br _int_32 dither
Flag to control dithering by GPU. Thisflag enables dithering of GPU rendering primitives.

0: Off, 1: On.

br _int_32 tpage

Set new current texture page. Thistexture page will be used until arendering primitivewith
atpagemember isencountered. Thusspritesfollowingabr ps_pri m dr aw_node primitive

will usethe new texture page, but the texture page will bereset if abr ps_pri m poly_ft3
or similar is used.

brps_rectangle * rect
Set new texturewindow. Thiswindow demarksarectangular regionwithinthecurrenttexture
page. All subsequent texture co-ordinateswill be offset fromthisregionrather thanfromthe

origin of thetexture page. Texture co-ordinateswill be wrapped at thelimites of thetexture
window rather than at the limits of the texture window.

It is useful to merge this primitive with sprites to allow mulitple texture pages to be used.

struct {
brps_pri mdraw node dm
brps_primsprite_8 sprites;
} dmsprites;
brps_rectangl e texture_w ndow,

Copyright O 1996 Argonaut Technologies Limited 65

br ps_pri m.draw_node
br _int_32 tpage;

Br PSPri nSprite8Set (&Im sprite8. sprite8);
Br PSPri mvap0Set (&dm sprite8.sprite8, 0, 0);

/* Set display ON, dither OFF, texture page, texture w ndow */
Br PSRect angl eSet (& ext ure_wi ndow, 32, 32, 8, 8);

Br PSPr i nDr awbdeSet (&dm sprite8.dm 1, 0, tpage,
&t ext ure_wi ndow) ;

/* Merge primtives to formsingle primtive packet
Sprite texture begins at (32,32) within texture page
al t hough
texture coordi nates are (0,0) due to texture wi ndow of f set
*/
Br PSPri mver ge(&dm sprite8.dm &dm sprite8.sprite8);

66 Copyright O 1996 Argonaut Technologies Limited

brps_pri mtexture_w ndow

brps _primtexture w ndow

The Structure

Thisstructuredescribesarendering control primitivefor thePlayStation. Itisusedtoalter thecurrent texture
window attribute of the current drawing environment (state of GPU).

Thet ypedef

(Seeps. h for precise declaration and ordering)
brps_primtag tag

br_uint_32 code[2] Reserved

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_primdraw node, brps_draw _environment,
brps_pri m environnent.

Members
brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _uint_32 code[2]

Primitive datain bit fields.

Copy/Assign

Use copy by structure assignment freely.

Copyright O 1996 Argonaut Technologies Limited 67

brps_pri mtexture_w ndow

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation.

Function for Sandard Initialisation

Br PSPr i mlext ur eW ndowSet ()

Description: Define a GPU texture window rendering control primitive

Declaration: voi d Br PSPri mText ur eW ndowSet (br ps_pri m draw_node* dm
brps_rectangl e* rect)

Arguments. brps_pri m.draw_npode * dm
A pointer to the destination draw mode primitive.
brps_rectangle * rect

Set new texturewindow. Thiswindow demarksarectangul ar regionwithinthecurrenttexture
page. All subsequent texture co-ordinateswill be offset from thisregionrather than fromthe
origin of thetexture page. Texture co-ordinateswill bewrapped at thelimites of thetexture
window rather than at the limits of the texture window.

See Also: brps_pri m draw_node

68 Copyright O 1996 Argonaut Technologies Limited

brps_pri mdraw_area

brps_primdraw area

The Structure

This structure describes a rendering control primitive for the PlayStation. It is used to alter the current
drawing areaattribute of the current drawing environment (state of GPU). It can be used in an order tableto
change the drawing area while rendering.

Thet ypedef

(Seeps. h for precise declaration and ordering)
brps_primtag tag

br_uint_32 code[2] Reserved

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Structures
Seebr ps_primtag, brps_draw _environnment, brps_pri menvironnent.

Members
brps _primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _uint 32 code[2]

Primitive datain bit fields.

Copy/Assign

Use copy by structure assignment freely.

Copyright O 1996 Argonaut Technologies Limited 69

brps_pri m.draw_area

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation.

Function for Sandard Initialisation

Br PSPr i nDr awAr eaSet ()

Description: Define a GPU drawing area rendering control primitive

Declaration: voi d Br PSPri nDr awAr eaSet (br ps_pri m draw_area* da,
brps_rectangl e* rect)

Arguments. brps_pri mdraw_area * da
A pointer to the destination draw area primitive.
brps_rectangle * rect

Set new drawing area. Thiswindow demarksarectangular region within theframe buffer to
which rendering is restricted.

See Also: br ps_draw_envi ronnment

70 Copyright O 1996 Argonaut Technologies Limited

br ps_pri m.draw of f set

brps_primdraw of f set

The Structure

This structure describes a rendering control primitive for the PlayStation. It is used to alter the current
drawing offset attribute of the current drawing environment (state of GPU). It can be used in an order table
to change the drawing offset while rendering.

Thet ypedef

(Seeps. h for precise declaration and ordering)
brps_primtag tag

br_uint_32 code[2] Reserved

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Structures

Seebr ps_primtag, brps_draw _environnment, brps_pri menvironnent.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _uint_32 code[2]

Primitive datain bit fields.

Copy/Assign

Use copy by structure assignment freely.

Copyright O 1996 Argonaut Technologies Limited 71

br ps_pri m.draw of f set

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation.

Function for Sandard Initialisation

Br PSPr i nDr awCX f set Set ()

Description: Define a GPU drawing area rendering control primitive

Declaration: voi d Br PSPri nDr awCx f set Set (br ps_pri m draw_of f set* do,
br _vector2s* offset)

Arguments. brps_pri mdraw of fset * do
A pointer to the destination draw offset primitive.
br _vector2s * offset

First and second ordinates. Set new drawing offset. Thisoffset (x,y) demarksan offset within
thecurrent drawing areafor rendering. The offset and address after addition of the offset are
wrapped at (-1024, -1024) - (1023, 1023).

See Also: br ps_draw_envi ronnment

72 Copyright O 1996 Argonaut Technologies Limited

br ps_pri m envi ronnent

brps_primenvironnent

The Structure

Thisstructuredescribesarendering control primitivefor the PlayStation. Itisusedto alter theentire current
drawing environment (state of GPU). It can be used in an order table to change the drawing environment
while rendering.

Thet ypedef

(Seeps. h for precise declaration and ordering)
brps_primtag tag

br_uint_32 code[15] Reserved

Related Functions

Order Tables
Seebr _order _tabl e.

Related Macros

PlayStation Rendering Primitives

See Br PSPri mAdd(), BrPSPri ntCat (), Br PSPri nNext (), Br PSPri nifer mi nat e() .

Related Sructures

Seebrps_primtag, brps_draw_environnent.
Members

brps primtag tag

Rendering primitive header. Contains low 24 bits of a pointer to the next primitive in the display list and
length of rendering primitive in 32 bit units.

br _uint 32 code[15]

Primitive datain bit fields.

Copy/Assign

Use copy by structure assignment freely.

Copyright O 1996 Argonaut Technologies Limited 73

br ps_pri m envi ronnent

Access & Maintenance

Do not modify members while display list traversal is being performed.
Initialisation
This structure is initialised by rendering primitive initialisation.

Function for Sandard Initialisation

Br PSPr i nDr awknvi r onnent Set ()

Description: Define a GPU drawing area rendering control primitive

Declaration: voi d Br PSPri nDr awCY f set Set (br ps_pri m envi ronnent *e,
br ps_draw_envi ronnent* de)

Arguments. brps_primenvironnent * e
A pointer to the destination environment primitive.
br ps_draw_envi ronnent * de
New drawing environment to set (GPU state).
See Also: br ps_draw_envi ronnment

14 Copyright © 1996 Argonaut Technologies Limited

br ps_draw_envi ronnment

br ps_draw envi ronnent

The Structure

This structure describes adrawing environment (GPU state) for the PlayStation. Attributes of the current
drawing environment (state) can be altered whilst display list traversal being performed. Typical
modifications are changing texture page or texture window.

Thet ypedef

(Seeps. h for precise declaration and ordering)
brps_rectangl e clip

br_vector2s of f set
brps_rectangl e t ext ure_wi ndow
br_uint_16 t page

br_uint_8 di t her

br_uint_8 di spl ay_draw
br_uint_8 cl ear_screen
br_uint_8 r,g,b

brps_pri m envi ronnent dr _env Reserved
Related Structures

Seebr ps_pri m envi ronment, br ps_di spl ay_envi ronnent .

Members
brps rectangle clip

Define arectangular clip region within the frame buffer.
br _vector2s offset
Define a drawing offset (origin) within the clip region.

brps _rectangl e texture_w ndow

Definearectangular clipregionwithinthecurrent texture page. Rendering primitivetexturecoordinatesare
offset from this window.

br uint 16 tpage
Current texture page to use until arendering primitive with a tpage member is encountered.

br uint 8 dither
Rendering dither flag. 0: Off, 1: On.

br uint_ 8 display_draw

Copyright O 1996 Argonaut Technologies Limited 75

br ps_draw_envi ronnment

Flag to control drawing to display area. The current drawing areais not necessarily the current display area
to alow for double buffering. 0: Off, 1: On.

br uint 8 clear _screen

Screen auto-clear flag. When the drawing environment is set, automatically clear the drawing area.
0: Off, 1: On.

br uint_ 8 r,g,b

Colour for screen auto-clear.

Copy/Assign

Usecopy by structureassignment freely. Do not modify dr _env member whiledisplay listtraversal isbeing
performed.

Initialisation
This structure isinitialised by member-wise initialisation.
Macros for Standard Initialisation
Br PSDr awkEnvi ronment RGBSet (p, r, g, b)
Set screen auto-clear colour components of draw environment.
Seebr _vector 2s, brps_rectangl e.

See also Br PSRect angl eSet () .

Br PSDr awknvi r onnment Def i ne()

Description: Define drawing environment from structure members

Declaration: br ps_draw_envi ronment *
Br PSDr awEnvi r onnent Set (br ps_draw_envi ronnment* d, br_int_32 x,
br_int_32 vy, br_int_32 w, br_int_32 h)

Arguments: br ps_draw_envi ronnent * d
A pointer to drawing environment to be defined.
br_int_32 x,y
Upper left co-ordinates of drawing area.
br_int_32 wh
Width and height of drawing area.
See Also: brps_prim environnent

76 Copyright O 1996 Argonaut Technologies Limited

br ps_draw_envi ronnment

Br PSDr

Description:
Declaration:
Arguments:

awkenvi ronnment Set ()

Set drawing environment as current draw environment (reset GPU state).
voi d Br PSDr awEnvi r onment Set (br ps_draw_envi ronnent * d)
brps_draw_environment * d

A pointer to drawing environment to be set.

Br PSDr

Description:
Declaration:
Arguments:

awenvi ronnment Get ()

Get the current drawing environment (get GPU state).
voi d Br PSDr awEnvi r onment Get (br ps_draw_envi ronnent * d)
brps_draw_environment * d

A pointer to a buffer for the current drawing environment.

Copyright O 1996 Argonaut Technologies Limited

77

br ps_di spl ay_envi r onnent

br ps_di spl ay_envi r onnment

The Structure
This structure describes a display environment (GPU state) for the PlayStation.

Thet ypedef

(See ps. h for precise declaration and ordering)
brps_rectangl e di spl ay

brps_rectangl e screen

br_uint_8 interlace

br_uint_8 rgb24

br_uint_8 type

br_uint_8 _pad Reserved
Related Structures

Seebr ps_draw_envi ronnent .

Members
br ps_rectangl e di spl ay
Display area within the frame buffer.

brps _rectangl e screen

Output screen display area. The screen areais calculated without regard to theval ue of the display member,
using the standard monitor screen upper-left point (0,0) and lower-right point (256,240).

br _uint_8 interlace

Interlace mode flag. 0: Non-interlaced, 1: Interlaced.
br uint_8 rgb24

Display 24 bit mode flag. 0: 16 bit, 1. 24 bit.

br uint_8 type

Display type flag. 0: PAL, 1: NTSC.

Copy/Assign

Usecopy by structureassignment freely. Donot modify dr _env member whiledisplay listtraversal isbeing
performed.

78 Copyright O 1996 Argonaut Technologies Limited

br ps_di spl ay_envi r onnent

Initialisation

This structure is initialised by member-wise initialisation.
Macros for Sandard Initialisation
Seebrps_rectangl e.

See also Br PSRect angl eSet () .

Br PSDi spl ayEnvi r onment Def i ne()

Description: Define display environment from structure members

Declaration: br ps_di spl ay_envi ronnment *
Br PSDr awEnvi r onnent Set (br ps_di spl ay_environment* d, br_int_32
X, br_int_32 vy, br_int_32 w, br_int_32 h)

Arguments. br ps_di spl ay_environnment * d
A pointer to display environment to be defined.
br_int_32 x,y
Upper-left co-ordinates of display area.
br_int_32 wh
Width and height of display area.
See Also: brps_draw_envi ronnent

Br PSDi spl ayEnvi r onnment Set ()

Description: Set display environment as current display environment (GPU state).
Declaration: voi d Br PSDi spl ayEnvi r onnent Set (br ps_di spl ay_envi ronment * d)
Arguments. br ps_di splay_environnent * d
A pointer to display environment to be set.

Br PSDi spl ayEnvi r onnment Get ()

Description: Get the current drawing environment (GPU state).
Declaration: voi d Br PSDi spl ayEnvi r onnent Get (br ps_di spl ay_envi ronment * d)
Arguments. br ps_di splay_environnent * d
A pointer to abuffer for the current display environment.

Copyright O 1996 Argonaut Technologies Limited 79

br materi al

br materi al

The Structure

Consult the Technical Reference Manual for full details of the br _mat eri al structure.

Thet ypedef

(See material . h for precise declaration and ordering)

br_uint_32
br _col our
br_uint_8
br _scal ar
br_uint_8

Members

flags

fog_col our

di vi de_| evel

di vi de_hi t her

al pha_bl end_rate

/* local fog colour */
/* level of recursion for polygon sub-division */
/* threshold for polygon sub-division */

br _uint_32 flags

This member determines how faces using the material are rendered, in terms of other members and aspects

of the scene.

Flag Symbol

Behaviour

BR_MATF_LI GHT

The material islit — affected by lightsin the scene

BR MATF_PRELI T

The material is pre-lit — colours are taken directly from models’ vertex structures
(seebr _vert ex). Any lights are ignored.

BR_MATF_SMOOTH

Any lighting is applied using Gouraud shading. Lighting levels are linearly
interpolated between vertices. Otherwise, the same lighting level is used across the
face

BR_MATF_DI THER

Effectively applies afilter to the screen to soften transitions between pixels.

BR_MATF_ALVAYS VI S| BLE

Faces using the material will always bevisible, and so back-face culling need not bel
performed for such faces

BR_MATF_TWD SI DED

The material hastwo sides, and lighting calculations are performed for both of them

BR_MATF_SEM _TRANS

Perform semi-transparent rendering. Pixels marked with the high bit set (bit 15) will
be rendered as semi-transparent. For 4 and 8 bit indexed texture pages, the palette
entries must be marked, and for 16 bit direct colour the individual pixels must be
marked. Semi-transparent rendering is slow as a screen read is needed per pixel.

BR_MATF_FOG ENVI RONVENT

Fog material to an arbitrary global environment fogging colour. Textured materials
may also be fogged to an arbitrary colour.

BR_MATF_FOG LOCAL

Fog material to an arbitrary local fogging colour. Textured materials may also be
fogged to an arbitrary colour.

BR_MATF_DEPTH_CUE

30

Fog material to black (rgb colour 0,0,0). Thisis faster than using environment or
local fogging.

Copyright O 1996 Argonaut Technologies Limited

br materi al

BR_MATF_DONT_SHADE

Perform textured rendering using just the colour value of the texels in the texture
page. The brightness values of the polygons are ignored.

BR_MATF_SUB DI VI DE

Perform polygon sub-division to reduce texture map distortion due to linear texture
mapping. The polygon with this material isrecursively sub-divided to minimise the
perspective error when texture mapping.

BR_MATF_TI LE

Allow atexture map to be tiled across a polygon more than once. If thisflag is not
specified and texture co-ordinates indicate atiled texture, the texture mapping will
be incorrect.

br _col our fog_col our

Anarbitrary colour for fogging amaterial, including textured materials. Each material may haveadifferent

local fog value.

br uint 8 divide_|evel

Recursionlevel for polygon sub-division. Polygonsaredivided into four smaller polygonsat each recursive
level. Although adeep level of recursion isdesirered to reduce linear texture mapping distortions, thiswill
consume a large amount of memory which is not available on the PlayStation.

br _scal ar divide_hither

Threshold distancefor polygon sub-division. Distancein front of view volumefrom cameraalong negative
z axis. The value should be greater than zero.

br uint 8 al pha_blend rate

Semi-transparency rate for rendering.

Semi-Transparency Rate

Behaviour

0.5 back x 0.5 front

1.0 back x 1.0 front

0.5 back x 1.0 front

wW| N[O

-1.0 back x 1.0 front

Copyright O 1996 Argonaut Technologies Limited 81

br matri x3t

br matri x3t

The Structure

A three column, four row, scalar array, used asa 3D affine matrix for general purpose 3D transformations
(translation, rotation) on the PlayStation (low precision). Functions are provided to allow it to be used as
though it were an integral type.

Thet ypedef

(See matri x. h for precise declaration and ordering)

br_int_16 n 3][3] Three rows of three columns

br_vector3 t Fourth row (vector which hastranslational effect).

Related Functions

Scene Modelling
See Br Act or ToAct or Mat ri x3t ().

Related Sructures

Seebr _matri x34.
Members

br int 16 n{3][3]

Each element of the matrix can be freely abd individually accessed. The elementsarein 3:12 signed fixed
point format.

br _vector3 t

Fourth row of matrix. Vector which has translation effect.

Arithmetic

Br Mat ri x3t Mul ()

Description: Multiply two matrixes together and place the result in athird matrix.

Declaration: void BrMatrix3tMil (br_matrix3t* A const br_matrix3t * B, const
br _matrix3t* O

82 Copyright O 1996 Argonaut Technologies Limited

Arguments:

See Also:

br matri x3t

br_matrix3t * A

A pointer to the destination matrix (must be different from both sources).
const br_matrix3t * B

Pointer to the left hand source matrix.

* C

Pointer to the right hand source matrix.

Br Mat ri x34Mul (),BrMatrix3tPre(),BrMtrix3tPost().

const br_matrix3t

Br Mat r

Description:
Declaration:

Arguments:

Result:

Remarks:

See Also:

| X3t nverse()

Compute the inverse of the supplied 3D affine matrix.

br _scalar BrMatrix3tlnverse(br_matrix3t* A, const

B)
br _matri x3t

br_matrix3t*

* A

A pointer to the destination matrix (must be different from source).
const br_matrix3t * B

A pointer to the source matrix.

br _scal ar

If theinverse exists, the determinant of the source matrix isreturned. If thereisno inverse,
scalar zero is returned.

Remember that whileaninversemay beobtained using doubleprecisionarithmetic, thisdoes
not necessarily mean that it can usingthebr _scal ar type. Only fixed point libraries are
supplied for the PlayStation due to performance considerations.

Br Mat ri x341 nverse(), Br MAtri x3t LPI nverse().

Br Mat r

Description:
Declaration:

Arguments:

See Also:

Copyright O 1996 Argonaut Technologies Limited

| X3t LPI nverse()

Computetheinverse of the supplied |ength preserving transformation matrix. Theresulting
matrix is undefined for non-length oreserving matrixes.

br _scal ar BrMatri x3t LPI nverse(br_matrix3t* A, const br_matri x3t*
B)
br_matrix3t * A

A pointer to the destination matrix (must be different from source).
const br_matrix3t * B
A pointer to the source matrix.

Br Matri x3t 1 nverse().

33

br matri x3t

Br Mat ri x3t Appl y()

Description:
Declaration:

Arguments:

See Also:

Appliesatransformationtoa3D point which may have non-unity homogenousco-ordinates.

voi d BrMatrix3tApply(br_vector3* A const br_vector4* B, const
br _matrix3t* O

br_vector3 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed point.

const br_vectord4 * B

A pointer to the source vector, holding the point to be transformed.
const br_matrix3t * ¢

A pointer to the transformation matrix to be applied.

Br Mat ri x34Appl y() .

Br Mat ri x3t Appl yP()

Description:
Declaration:

Arguments:

See Also:

Applies atransformation to a 3D point.

voi d BrMatri x3t Appl yP(br_vector3* A, const br_vector3* B, const
br_matrix3t* O

br_vector3 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed point.

const br_vector3 * B

A pointer to the source vector, holding the point to be transformed.
const br_matrix3t * ¢

A pointer to the transformation matrix to be applied.

Br Mat ri x34Appl yP(),Br MAt ri x34Appl y() .

Br Mat ri x3t Appl yV()

Description:

Declaration:

Appliesatransformationtoa3D vector, i.e. asfor apoint but without transl ation components
(avector has no location).

voi d BrMatri x3t Appl yP(br_vector3* A, const br_vector3* B, const
br _matrix3t* O

Copyright O 1996 Argonaut Technologies Limited

br matri x3t

Arguments. br_vector3 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed vector.

const br_vector3 * B
A pointer to the source vector, holding the vector to be transformed.
const br_matrix3t * ¢
A pointer to the transformation matrix to be applied.
See Also: Br Mat ri x34Appl yV(), Br MAt ri x34Appl y() .

Br Mat ri x3t TAppl y()

Description: Appliesatransformation to atransposed 3D point which may have non-unity homogenous
co-ordinates.

Declaration: voi d BrMatri x3t TAppl y(br_vector4* A, const br_vector4* B, const
br_matrix3t* O

Arguments. br_vector4 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed point.

const br_vector4 * B

A pointer to the source vector, holding the point to be transformed.

const br_matrix3t * ¢

A pointer to the transformation matrix to be applied transposed.
See Also: Br Matri x34TAppl y(), Br MAt ri x34Appl y() .

Br Mat ri x3t TAppl yP()

Description: Applies atransposed transform to a 3D point.

Declaration: voi d Br Matri x3t TAppl yP(br _vect or3* A, const br_vector3* B, const
br _matrix3t* O

Arguments. br_vector3 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed point.

const br_vector3 * B
A pointer to the source vector, holding the point to be transformed.
const br_matrix3t * ¢

A pointer to the transform matrix to be applied transposed - the translation elements are
presumed zero or irrelevant.

See Also: Br Matri x34TAppl yP(), Br MAt ri x34Appl y() .

Copyright O 1996 Argonaut Technologies Limited 85

br matri x3t

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| x3t TAppl yV()
Applies atransposed transform to a 3D vector, i.e. as for a point but without translation

components (a vector has no location).

voi d BrMatri x3t TAppl yP(br _vector3* A, const br_vector3* B, const
br _matrix3t* O

br_vector3 * A

A pointer to the destination vector (must be different from the source, and not part of the
transformation), to hold the transformed vector.

const br_vector3 * B

A pointer to the source vector, holding the vector to be transformed.

const br_matrix3t * ¢

A pointer to the transform matrix to be applied transposed - the translation elements are
presumed zero or irrelevant.

Br Mat ri x34TAppl yV() .

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t Pre()

Pre-multiply one matrix by another.

void BrMatrix3tPre(br_matrix3t* A, const br_matrix3t* b)
br_matrix3t * A

A pointer to the subject matrix (may be same as B).

const br_matrix3t * B

A pointer to the pre-multiplying matrix.

Br Matri x34Pre().

Br Mat r

Description:
Declaration:

36

| X3t PreScal e()

Pre-multiply a matrix by a scaling transform matrix.

voi d BrMatrix3tPreScal e(br_matrix3t* mat, br_scal ar sx,
br _scal ar sy, br_scalar sz)

Copyright O 1996 Argonaut Technologies Limited

br matri x3t

Arguments. br_nmatrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Scaling component along the x axis.
br _scal ar sy

Scaling component along they axis.
br_scal ar sz

Scaling component along the z axis.

See Also: Br Matri x34PreScal e(),BrMatri x3t Scal e(), Br Mat ri x3t Post Scal e() .

Br Mat ri x3t PreShear X()

Description: Pre-multiply amatrix by an x invariant shearing transform matrix.

Declaration: voi d BrMatri x3t PreShear X(br_matri x3t* mat, br_scal ar sy,
br _scal ar sz)

Arguments. br_matrix3t * mat
A pointer to the destination matrix.
br _scal ar sy
Shear factor by which the x co-ordinate is included in the transformed y co-ordinate.
br_scal ar sz
Shear factor by which the x co-ordinate isincluded in the transformed z co-ordinate.
See Also: Br Mat ri x34Pr eShear X(), Br Mat ri x3t Shear X(), Br Mat ri x3t Post Shear X() .

Br Mat ri x3t PreShear Y()

Description: Pre-multiply amatrix by ay invariant shearing transform matrix.

Declaration: voi d BrMatri x3t PreShear Y(br_matri x3t* mat, br_scal ar sx,
br _scal ar sz)

Arguments. br_matrix3t * mat
A pointer to the destination matrix.
br _scal ar sx
Shear factor by which they co-ordinate isincluded in the transformed x co-ordinate.
br _scal ar sz
Shear factor by which the y co-ordinate isincluded in the transformed z co-ordinate.
See Also: Br Matri x34Pr eShear Y(), Br Matri x3t Shear Y(),Br Mat ri x3t Post Shear Y() .

Copyright O 1996 Argonaut Technologies Limited 87

br matri x3t

Br Mat ri x3t PreShear Z()

Description: Pre-multiply amatrix by a z invariant shearing transform matrix.

Declaration: void BrMatri x3t PreShearZ(br_matri x3t* mat, br_scal ar sx,
br _scal ar sy)

Arguments: br_matrix3t * mat
A pointer to the destination matrix.
br _scal ar sx
Shear factor by which the z co-ordinate is included in the transformed x co-ordinate.
br _scal ar sy
Shear factor by which the z co-ordinate isincluded in the transformed y co-ordinate.
See Also: Br Mat ri x34Pr eShear Z() ,Br Mat ri x3t Shear Z() , Br Mat ri x3t Post Shear Z() .

Br Vatri x3t PreTransl at e()

Description: Pre-multiply a matrix br atranslation transform matrix.

Declaration: void BrMatri x3tPreTransl ate(br_matrix3t* mat, br_scal ar dx,
br _scal ar dy, br_scalar dz)

Arguments: br_matrix3t * mat

A pointer to the subject matrix.

br _scal ar dx

The x axis component used to form the translation matrix.
br _scal ar dy

The yaxis component used to form the translation matrix.
br _scal ar dz

The z axis component used to form the translation matrix.

See Also: Br Matri x34Post Transl ate(), BrMatri x34Transl ate(),
BrMatri x3t Transl ate().

Br Mat ri x3t PreRot at e()

Description: Pre-multiply a matrix by avector specified axis, rotational transform matrix.

Declaration: void BrMatrix3tPreRotate(br_matrix3t* mat, br_angle r, const
br _vector3* axis)

88 Copyright O 1996 Argonaut Technologies Limited

Arguments:

See Also:

br matri x3t

br_matrix3t * mat
A pointer to the subject matrix.
br_angle r

The angle about the specified axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (with a vector pointing at you).

const br_vector 3*

The arbitrary (normalised) axis vector about which the rotation occurs.
br_scal ar dz

The z axis component used to form the translation matrix.

Br Mat ri x34Post Rot at e(),Br Matri x34Rot at e(),
Br Mat ri x3t Post Rot at e(),Br Matri x3t Rot ate().

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t PreRot at eX()

Pre-multiply amatrix by an x axis rotational transform matrix.

void BrMatrix3tPreRotateX(br_matrix3t* mat, br_angle rx)
br_matrix3t * mat

A pointer to the subject matrix.

br_angle rx

The angle about the x axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

Br Mat ri x34Post Rot at eX(), Br Mat ri x34Rot at eX(),
Br Mat ri x3t Post Rot at eX(), Br Mat ri x3t Rot at eX() .

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t PreRot at eY()

Pre-multiply amatrix by ay axis rotational transform matrix.

void BrMatrix3tPreRotateY(br_matrix3t* mat, br_angle ry)
br_matrix3t * mat

A pointer to the subject matrix.

br_angle ry

The angle about the y axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

Br Mat ri x34Post Rot at eY(), Br Matri x34Rot ateY(),
Br Mat ri x3t Post Rot at eY(),BrMatri x3t RotateY().

Copyright O 1996 Argonaut Technologies Limited 89

br matri x3t

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t PreRot at eZ()

Pre-multiply amatrix by an zaxis rotational transform matrix.
void BrMatrix3tPreRotateZ(br_matrix3t* mat,
br _matri x3t

br_angle rz)
* mat

A pointer to the subject matrix.

br_angle rz

The angle about the z axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

Br Mat ri x34Post Rot at eZ(), Br Mat ri x34Rot at eZ(),

Br Mat ri x3t Post Rot at eZ(), Br Mat ri x3t Rot at eZ() .

Br Mat r

Description:
Declaration:

Arguments:

Effects:

See Also:

| X3t PreTransf orm)

Pre-multiply amatrix by a generic transform.

void BrMatrix3tPreTransforn{br_matrix3t* nat,
br_transfornm xform

br _matri x3t

const

* mat

A pointer to the subject matrix.

const br_transform* xform
The pre-multiplying generic transform.

Thetransform isfirst converted to a general 3x4 transform matrix using
Br Tr ansf or mfoMat ri x3t () and then applied as a pre-multiplying matrix using
BrMatrix3tPre().

Br Mat ri x34Post Tr ansf orn(), Br Mat ri x3t Post Transforn().

Br Mat r

Description:
Declaration:
Arguments:

See Also:

90

| X3t Post ()

Post-multiply one matrix by another.

voi d BrMatrix3tPost(br_matrix3t* A const br_matrix3t* B)
br_matrix3t * A

A pointer to the subject matrix (may be same as B).

const br_matrix * B

A pointer to the post-multiplying matrix.

Br Matri x34Pre(),BrMatrix34Mul (),BrMatrix3tPre(),BrMatrix3tMil ().

Copyright O 1996 Argonaut Technologies Limited

br matri x3t

Br Mat ri x3t Post Tr ansl at e()

Description: Post-multiply one matrix by a atranslation transform matrix.

Declaration: voi d BrMatri x3t Post Transl ate(br_matri x3t* mat, br_scal ar dx,

br _scal ar dy, br_scalar dz)
Arguments. br_matrix3t * mat
A pointer to the subject matrix.
br _scal ar dx
The x axis component used to form the translation matrix.
br _scal ar dy
They axis component used to form the translation matrix.
br _scal ar dz
The z axis component used to form the translation matrix.

See Also: Br Matri x34PreTransl ate(),BrMatri x34Transl ate(),
BrMatri x3tPreTransl ate(),BrMatrix3tTransl ate().

Br Mat ri x3t Post Scal e()

Description: Post-multiply amatrix by a scaling transform matrix.

Declaration: voi d BrMatri x3t Post Scal e(br_matri x3t* mat, br_scal ar sx,

br _scal ar sy, br_scalar sz)
Arguments. br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Scaling component along the x axis.

br _scal ar sy
Scaling component along the y axis.
br _scal ar sz

Scaling component along the z axis.

See Also: Br Mat ri x34Post Scal e(), BrMatri x3t Scal e(), Br Matri x3t PreScal e().

Br Mat ri x3t Post Shear X()

Description: Post-multiply a matrix by an x invariant shearing transform matrix.

Declaration: voi d Br Mat ri x3t Post Shear X(br_matri x3t* mat, br_scal ar sy,

br _scal ar sz)

Copyright O 1996 Argonaut Technologies Limited

o1

br matri x3t

Arguments:

See Also:

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sy

Shear factor by which the x co-ordinate is included in the transformed y co-ordinate.
br_scal ar sz

Shear factor by which the x co-ordinate isincluded in the transformed z co-ordinate.

Br Mat ri x34Post Shear X(), Br Mat ri x3t Shear X(), Br Matri x3t PreShear X() .

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| X3t Post Shear Y()

Post-multiply a matrix by ay invariant shearing transform matrix.

voi d BrMatri x3t Post Shear Y(br_natri x3t* mat,
br _scal ar sz)

br_scal ar sx,

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Shear factor by which the y co-ordinate isincluded in the transformed x co-ordinate.
br _scal ar sz

Shear factor by which the y co-ordinate isincluded in the transformed z co-ordinate.

Br Mat ri x34Post Shear Y(), Br Mat ri x3t Shear Y(), Br Matri x3t PreShear Y() .

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| X3t Post Shear Z()

Post-multiply a matrix by a z invariant shearing transform matrix.

voi d BrMatri x3t Post Shear Z(br _matri x3t* mat,
br _scal ar sy)

br_scal ar sx,

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Shear factor by which the z co-ordinate is included in the transformed x co-ordinate.
br _scal ar sy

Shear factor by which the z co-ordinate isincluded in the transformed y co-ordinate.

Br Mat ri x34Post Shear Z(), Br Mat ri x3t Shear Z(), Br Matri x3t PreShear Z() .

Br Mat r

Description:

92

| X3t Post Rot at e()

Post-multiply a matrix by a vector specified axis, rotational transform matrix.

Copyright O 1996 Argonaut Technologies Limited

Declaration:

Arguments:

See Also:

br matri x3t

voi d BrMatrix3t Post Rotate(br_matrix3t* mat,
br _vector3* axis)

br _angle r, const

br_matrix3t * mat

A pointer to the subject matrix.

br_angle r

The angle about the specified axis used to form the rotation matrix.
const br_vector3 *

The arbitrary (normalised) axis vector about which the rotation occurs.

Br Mat ri x34PreRotate(),BrMatri x34Rotate(),Br Matri x3t PreRot ate(),
BrMat ri x3t Rotate().

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t Post Rot at eX()

Post-multiply a matrix by an x axis rotational transform matrix.
voi d BrMatri x3t Post Rotat eX(br_matri x3t* mat,
br _matri x3t

br_angl e rx)
* mat

A pointer to the subject matrix.

br_angle rx

The angle about the x axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

Br Mat ri x34Pr eRot at eX(),Br Matri x34Rot at eX(),

Br Mat ri x3t PreRot at eX(),Br Matri x3t RotateX().

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| X3t Post Rot at eY()

Post-multiply a matrix by ay axisrotational transform matrix.
voi d BrMatrix3t Post RotateY(br_matrix3t* mat,
br _matri x3t

br _angle ry)

* mat

A pointer to the subject matrix.

br_angle ry

The angle about the y axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

Br Matri x34PreRot ateY(),BrMatri x34RotateY(),
Br Matri x3t PreRotateY(),BrMatri x3t RotateY().

Br Mat r

Description:

Copyright O 1996 Argonaut Technologies Limited

| X3t Post Rot at eZ()

Post-multiply a matrix by an zaxis rotational transform matrix.

93

br matri x3t

Declaration: voi d BrMatri x3t Post RotateZ(br_matrix3t* mat, br_angle rz)
Arguments: br_matrix3t * mat

A pointer to the subject matrix.

br_angle rz

The angle about the z axis used to form the rotation matrix. A positive angle represents a
clockwise rotation (looking toward the origin).

See Also: Br Mat ri x34Pr et Rot at eZ(), Br Matri x34Rot at eZ(),
Br Mat ri x3t PreRot at eZ(), Br Matri x3t Rot at eZ() .

Br Mat ri x3t Post Tr ansf or n()

Description: Post-multiply amatrix by a generic transform.

Declaration: voi d Br Matri x3t Post Transfornm(br_nmatri x3t* mat, const
br_transfornt xform

Arguments. br_matrix3t * mat
A pointer to the subject matrix.
const br_transform* xform
The pre-multiplying generic transform.

Effects: Thetransformisfirst converted to a general 3x4 transform matrix using
Br Tr ansf or niToMat ri x3t () and then applied as a pre-multiplying matrix using
Br Mat ri x3t Post () .

See Also: Br Mat ri x34PreTransforn(),BrMatrix3t PreTransforn().

Conversion

Notethat only matrixiescan represent the full gamut of translation, shearing, reflection and scaling effects,
some of these effects will be lost (or produce undefined behaviour) when converting into another
transformation.

From Eulers, Quaternions and Transforms

SeeBr Eul er ToMat ri x3t (), Br Quat ToMatri x3t (), Br Transf or niToMat ri x3t ().
Also see Br Tr ansf or nifoTr ansf or n() .

To Eulers, Quaternions and Transforms

SeeBr Mat ri x3t ToEul er (), BrMat ri x3t ToQuat (), Br Matri x3t ToTr ansf or m() as described
below.

Also see Br Tr ansf or nifoTr ansf or n() .

94 Copyright O 1996 Argonaut Technologies Limited

br matri x3t

Br Mat r

Description:
Declaration:

Arguments:

Result:

Remarks:

| X3t ToEul er ()

Convert a 3D affine matrix to a Euler angle set, that would have the same rotational effect.

br _eul er* BrMatrix3t ToEul er (br_eul er* eul er, const br_matrix3t*
mat)

br _euler * euler

A pointer to the destination Euler angle set to receve the conversion. The Euler angle set’s
Euler order is used to determine each angle.

const br_matrix3t * mat

A pointer to the source matrix to convert from.
br_euler *

Returns euler for convenience.

Translation components of the matrix are lost in conversion.

Br Mat r

Description:
Declaration:
Arguments:

Result:

Remarks:

| x3t ToQuat ()

Convert a 3D affine matrix to a quaternion, that would have the same rotational effect.
br _quat* BrMatrix3t ToQuat (br_quat* q,
br_quat * q

const br_matrix3t* mat)

A pointer to the destination quaternion to receive the conversion.
const br_matrix3t * mat

A pointer to the source matrix to convert from.
br _quat *

Returns g for convenience.

Translation components of the matrix are lost in conversion.

Br Mat r

Description:
Declaration:

Arguments:

Copyright O 1996 Argonaut Technologies Limited

| X3t ToTr ansf or n()

Convert a 3D affine matrix toto a specific transform, that would have a similar
transformational effect.

void BrMatrix3tToTransforn(br_transfornt xform const
br_matrix3t* mat)

br _transform* xform

A pointer to the destination transform. The type member of the destination transform is
retained and determines the method of conversion.

const br_matrix3t * nmat

A pointer to the source matrix to be converted.

95

br matri x3t

See Also:

Br Mat ri x34ToTransforn() .

Copy/Assign

Although copy by structure assignment currently works, use Br Mat r i x3t Copy() or
Br Mat ri x3t Copy34() toensure compatibility.

Br Mat r

Description:
Declaration:
Arguments:

See Also:

| x3t Copy()

Copy amatrix.

voi d BrMatrix3t Copy(br_matrix3t* A const br_matrix3t* B)
br_matrix * A

A pointer to the destination matrix (may be the same as source - though redundant).
const br_matrix3t * B
A pointer to the source matrix.

Br Tr ansf or nifoTr ansf or () .

Br Mat r

Description:
Declaration:
Arguments:

See Also:

i x3t Copy34()

Copy a 3x4 high precision matrix to alower precision 3x4 matrix.

voi d BrMatrix3t Copy34(br_matrix3t* A, const br_matrix34* B)
br_matrix3t * A

A pointer to the destination matrix (lower precision).
const br_matrix34 * B

A pointer to the source 3x4 matrix (high precision).

Br Mat ri x34Copy3t () .

Br Mat r

Description:

Declaration:
Arguments:

96

| x3t Copy4()

Copy a 4x4 high precision matrix to alower precision 3x4 matrix, discarding right-hand

column.

voi d BrMatrix3t Copy4(br_matrix3t* A, const br_matrix4* B)
br_matrix3t * A

A pointer to the destination matrix (lower precision).
const br_matrix4 * B

A pointer to the source 4x4 matrix.

Copyright O 1996 Argonaut Technologies Limited

br matri x3t

See Also: Br Matri x4Copy3t ().

Access & Maintenance

Membersmay befreely accessed. Maintenanceisonly requiredfor length preserving matrixesthat havebeen
modified.

Br Mat ri x3t LPNor mal i se()

Description: Normalise alength preserving matrix.
Declaration: voi d BrMatri x3t LPNormal i se(br_matrix3t* A, const br_matrix3t* B)
Arguments. br_matrix3t * A
A pointer to the destination matrix, which must not point to the source matrix.
const br_matrix3t * B
A pointer to the source matrix.

Effects: The destination matrix isthe souce matrix adjusted to that it represents alength preserving
transformation.
Remarks: Thisfunctionistypically applied to alength preserving matrix which hasundergone along
seguence of operations, to ensure that the final matrix is still truly length preserving
(regardless of rounding errors).

See Also: Br Matri x34LPNor mal i se().

Referencing & Lifetime

Thisstructure may be freely referenced, though take careif thereis potential to supply the same matrix as
more than one argument to the same funciton.

Initialisation
No static initialisers are provided. However, four BR_VECTOR3() macroswould serve aswell. All other
initialisation should use Br Mat ri x3t Copy() or any of the following initialisation functions.

BrMatri x3tldentity()

Description: Set the specified matrix to the identity transformation matrix.
Declaration: void BrMatrix3tldentity(br_matrix3t* mat)

Copyright O 1996 Argonaut Technologies Limited 97

br matri x3t

Arguments:

Effects:

br_matrix3t * mat
A pointer to the destination matrix.
Stores the identity matrix at the destination.

Br VAt r i

Description:
Declaration:

Arguments:

See Also:

x3t Transl at e()

Set the specified matrix to a matrix representing a specific translation.

void BrMatrix3tTransl ate(br_matrix3t* mat, br_scal ar dx,
br _scal ar dy, br_scalar dz)

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar dx

Translation component along the x axis.
br _scal ar dy

Translation component along the y axis.
br _scal ar dz

Translation component along the z axis.

Br Mat ri x34Transl ate(),BrMatri x3t PreTransl ate(),
Br Mat ri x3t Post Transl ate() .

Br VAt r i

Description:
Declaration:

Arguments:

See Also:

98

x3t Scal e()

Set the specified matrix to a matrix representing a specific scaling.

void BrMatrix3tScal e(br_matrix3t* mat, br_scalar sx, br_scalar
sy, br_scalar sz)

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Scaling component along the x axis.

br _scal ar sy

Scaling component along the y axis.

br_scal ar sz

Scaling component along the z axis.

Br Mat ri x34Scal e(), BrMatri x3t PreScal e(), Br Mat ri x3t Post Scal e() .

Copyright O 1996 Argonaut Technologies Limited

br matri x3t

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| X3t Shear X()

Set the specified matrix to a matrix representing a shear, invariant along the x axis. Thus
values of y and z co-ordinates will be scaled in proportion to the value of the x co-ordinate.
voi d Br Matri x3t Shear X(br _matri x3t* mat,
sz)

br_scal ar sy, br_scal ar

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sy

Shear factor by which the x co-ordinate is included in the transformed y co-ordinate.
br_scal ar sz

Shear factor by which the x co-ordinate isincluded in the transformed z co-ordinate.

Br Mat ri x34Shear X(),Br Matri x3t PreShear X(),Br Mat ri x3t Post Shear X() .

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| X3t Shear Y()

Set the specified matrix to a matrix representing a shear, invariant along the y axis. Thus
values of x and z co-ordinates will be scaled in proportion to the value of they co-ordinate.
voi d BrMatri x3t Shear Y(br_matri x3t* mat,
sz)

br_scal ar sx, br_scal ar

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Shear factor by which they co-ordinate isincluded in the transformed x co-ordinate.
br _scal ar sz

Shear factor by which the y co-ordinate isincluded in the transformed z co-ordinate.

Br Mat ri x34Shear Y(),Br Matri x3t PreShear Y(),Br Mat ri x3t Post Shear Y() .

Br Mat r

Description:

Declaration:

Copyright O 1996 Argonaut Technologies Limited

| X3t Shear Z()

Set the specified matrix to a matrix representing a shear, invariant along the z axis. Thus
values of x and y co-ordinateswill be scaled in proportion to the value of the z co-ordinate.
voi d Br Matri x3t Shear Z(br _matri x3t* mat,
sy)

br_scal ar sx, br_scal ar

99

br matri x3t

Arguments:

See Also:

br_matrix3t * mat

A pointer to the destination matrix.

br _scal ar sx

Shear factor by which the z co-ordinate is included in the transformed x co-ordinate.
br _scal ar sy

Shear factor by which the z co-ordinate isincluded in the transformed y co-ordinate.

Br Mat ri x34Shear Z() ,Br Mat ri x3t PreShear Z() , Br Mat ri x3t Post Shear Z() .

Br Mat r

Description:

Declaration:
Arguments:

See Also:

| X3t Rot at eX()

Set the specified matrix toamatrix representing arotati on about thex axisthrough aspecified
angle.

voi d BrMatrix3t RotateX(br_matrix3t* mat,
br _matri x3t

br_angl e rx)
* mat

A pointer to the destination matrix.

br_angl e rx

Rotation about the x axis.

Br Mat ri x34Rot at eX(), Br Matri x3t PreRot at eX(),
Br Mat ri x3t Post Rot at eX() .

Br Mat r

Description:

Declaration:
Arguments:

See Also:

| X3t Rot at eY()

Set the specified matrix toamatrix representing arotation about they axisthrough aspecified
angle.

void BrMatrix3tRotateY(br_matrix3t* mat,
br _matri x3t

br_angle ry)
* mat

A pointer to the destination matrix.

br_angle ry

Rotation about the y axis.

Br Matri x34Rot at eY(),Br Matri x3t PreRotateY(),
Br Mat ri x3t Post Rot at eY() .

Br Mat r

Description:

Declaration:

100

| X3t Rot at eZ()

Set the specified matrix toamatrix representing arotati on about thex axisthrough aspecified
angle.

voi d BrMatrix3tRotateZ(br_matrix3t* mat, br_angle rz)

Copyright O 1996 Argonaut Technologies Limited

Arguments:

See Also:

br matri x3t

br_matrix3t * mat

A pointer to the destination matrix.
br_angle rz

Rotation about the z axis.

Br Mat ri x34Rot at eZ(), Br Matri x3t PreRot at eZ(),
Br Mat ri x3t Post Rot at eZ() .

Br Mat r

Description:
Declaration:

Arguments:

See Also:

| X3t Rot at e()

Set the specified matrix to amatrix representing arotation about agiven axisvector through
aspecified angle.

void Briatrix3tRotate(br_matrix3t* mat,
br _vector3* a)

br _angle r, const

br_matrix3t * mat

A pointer to the destination matrix.

br_angle r

Rotation about the specified axis vector.

const br_vector3 * a

The arbitrary (normalised) axis vector about which the rotation occurs.

Br Mat ri x34PreRot ate(), BrMatri x34Post Rot at e(),
Br Mat ri x3t PreRotate(),BrMatri x3t Post Rot at e() .

Br Mat r

Description:

Declaration:
Arguments:

Effects:

| X3t ScreenMat ri xSet ()
Set the specified matrix to be the current model to screen matrix used by the PlayStation
hardware.
voi d BrMatri x3t Rotate(const br_nmatrix3t* mat)
const br_matrix3t * nmat
A pointer to the source matrix.
The current hardware (GTE) matrix is set to the source matrix.

Copyright O 1996 Argonaut Technologies Limited

101

br matrix34

br matri x34

The Structure

Consult the Technical Reference Manual for full details of the br _mat r i x34 structure..

Copy/Assign

The following additional function is relevant to the br _mat ri x34 structure.

Br Mat ri x34Copy3t ()

Description: Copy a 3x4 low precision matrix to a higher precision 3x4 matrix.
Declaration: voi d BrMatri x34Copy3t (br_nmatrix3t* A, const br_matrix34* B)
Arguments. br_matrix34 * A
A pointer to the destination matrix (high precision).
const br_matrix3t * B
A pointer to the source 3x4 matrix (low precision).
See Also: Br Mat ri x3t Copy34() .

102 Copyright O 1996 Argonaut Technologies Limited

br_matri x4

br matri x4

The Structure

Consult the Technical Reference Manual for full details of the br _mat ri x4 structure.

Copy/Assign

The following additional function is relevant to the br _mat ri x4 structure.

Br Mat ri x4Copy3t ()

Description: Copy a 3x4 low precision matrix to a higher precision 4x4 matrix.
Declaration: voi d BrMatri x4Copy3t (br_matrixt* A, const br_matrix34* B)
Arguments. br_matrix4 * A
A pointer to the destination matrix (high precision).
const br_matrix3t * B
A pointer to the source 3x4 matrix (low precision).

Effects. Thesourceiscopiedintothedestination, and thefourth column of thedestinationisset tothe
implicit (0,0,0,1) column vector.

See Also: Br Mat ri x3t Copy34() .

Copyright O 1996 Argonaut Technologies Limited 103

br rnodel

br nodel

The Structure

Consult the Technical Reference Manual for full details of the br _nmodel structure.

Import & Export

Br Fnt TMDLoadMany ()

Description:
Declaration:

Arguments:

Effects:

Result:

Remarks:

See Also:

Load amodel in the Sony TMD format.

br _ui nt _32 Br Fnt TMDLoadMany(const char* fil ename, const
br _nodel ** nodels, br_uint_16 num

const char * filenane

Name of the file containing the model or models to load.
const br_nodel ** nodels

A non-NULL pointer to an array of pointers to models.

br_uint_16 num

Maximum number of modelsto load.

Searchesfor f i | ename. Material references are resolved by aregistry search. A

br _material _fi nd_cbf nhook function may be usedto generatenew materialsif this
searchfails. Thesearch pattern usedisazeroterminated hexadecimal string representing the
material flags.

Colour map references are also resolved by aaregistry search. A br _map_fi nd_cbfn
hook function may be used to generate new pixel mapsif thissearchfails. The search pattern
used is a zero terminated hexadecimal string representing the pixel map flags.

br _uint_32
Returnsthenumber of model sloaded successfully. Thepointer array if supplied, isfilledwith
pointers to the loaded models.

Only models composed of triangular polygons are loaded. Sprites, lines and quadrilateral
primitives are ignored.

Br Mat eri al Fi ndHook (), Br MapFi ndHook() .

104

Copyright O 1996 Argonaut Technologies Limited

br _pi xel map

br _pi xel map

The Structure

Consult the Technical Reference Manual for full details of the br _pi xel nap structure.

Thet ypedef

(See pi xel map. h for precise declaration and ordering)
br_uint_8 type

br _uint_16 t page

br_uint_16 cl ut

Members

br uint 16 type

This member defines the type of data stored for each pixel in the pixel map. The various types have
values defined by the following symbols:

Pixel Map Type Pixel Map Behaviour

BR_PMT_I NDEX 4 4 bit index into a colour map (16 colours)

BR_PMI_I NDEX_8 8 bit index into a colour map (256 colours)

BR_PMI_BGR 555 16 bit ‘true colour’ RGB, 5 bits each colour, 1 bit transparency rate.

Pixel Map Type 32 Bit Pixel Value Encoding First Four Bytes? of Left Hand Pixel

BR_PMI_I NDEX 4 0000000000000000000000000000i i i i L T

BR_PMI_I NDEX_8 000000000000000000000000i i iiiiii LI T T T T

BR_PMI_BGR 555 0000000000000000t bbbbbgggggrrrrr gggrrrrr tbbbbbgg

a. Theleft hand byte isthe byte atpi xel s .

All values are written with the most significant bit to the | eft.

The Encoding column represents the 32 bit value to be supplied as col our to functions such as
Br Pi xel mapPi xel Set () . Thelast column shows how the first pixel on arow will appear in the
first four bytes indexed from pi xel s . The dots represent further pixels. The ordering of bytes pixel
maps is independent of word byte order.

br uint 16 tpage

This member determines indicates the encoded |ocation of the pixelmap’s pixels within the frame buffer.

See Br Pi xel mapTPageSet () .

Copyright O 1996 Argonaut Technologies Limited 105

br _pi xel map

br _uint_16 cl ut

Thismember determinesindicatesthe encoded | ocation of the pixelmap’ sclut withintheframebuffer. This
member is only used when using 4 or 8 bit indexed pixelmaps.

See Br Pi xel mapC ut Set ().

Import & Export

Br Fnt TI M_oad()

Description: Load a pixel map in Sony TIM format.

Declaration: br _pi xel map *Br Frt TI MLoad(const char* fil ename, br_uint_32
fl ags)

Arguments. const char * fil enane
Name of the file containing the pixel map to load.

br _uint_32 flags
Zero (ignored).

Effects. Searchesfor fi | enane. 4 bit indexed, 8 bit indexed, 16 bit high colour and 24 bit true
colour images are supported. Note however, bitmaps are in blue-green-red format for the
PlayStation, not the traditional BRender red-green-blue format.

Result: br _pi xel map *

A pointer to the pixel map loaded.
See Also: BrFnt G f Load(), Br Fnt | FFLoad() , Br Fnt BMPLoad() , Br Fnt TGALoad() .

106 Copyright O 1996 Argonaut Technologies Limited

br transform

br transform

The Structure

ThisisBRender’ sgeneric transformtype, primarily used to specify atransformation from one actor’ s space
to another’s. In an actor it represents the transform to be applied to co-ordinates (such as of amodel) inits
space to bring them into the co-ordinate space of its parent. The structure has been extended for use with
dedicated PlayStation hardware.

Thet ypedef

(See transform h for precise declaration and ordering)

Transform Type

br_uint_16 type Specifies how the transformation is represented

Tranglation Transform
br_vector3 t.translate.t Trandlation for the Translation transform type

Euler Transform

br_vector3 t.euler.t Trandlation for the Euler transform type

br _eul er t.euler.e Euler angle set of the Euler transform type
Look Up Transform

br_vector3 t.loop_up.t Trandlation for the Loop Up transform type
br_vector3 t.l ook_up. | ook Look-at vector for the Look Up transform type
br_vector3 t.l ook_up. up Look-up vector for the Look Up transform type

Quaternion Transform
br_vector3 t.quat.t Trandlation for the Quaternion transform type
br _quat t.quat.q Quaternion rotation for the Quaternion transform

Matrix Transform
br_matrix34 t. mat Trandation for Length Preserving and Non-Length
Preserving Matrix transform types

Matrix Transform (Low Precision for PlayStation)

br_matri x3t t. mat 3t. mat Translation for Matrix transform type

Members

See the Technical Reference Manual for a precise definition of members.

br uint 16 type
This member defines which other members of the transform structure have meaning. It should never be

modified directly except for initialisation purposes. Refer toBr Tr ansf or mroTr ansf or nm() for detailsof
how to convert from one transform to another.

Copyright O 1996 Argonaut Technologies Limited 107

br transform

This member may have any one of the following values:

Value Symbol

M eaning

BR_TRANSFORM_ | DENTI TY

The transform is the identity.

BR_TRANSFORM_TRANSLATI ON

Thetransformisatrandation only (heldint . transl ate. t).

BR_TRANSFORM _EULER

Thetransform is represented by aEuler angleset (t . eul er. e) anda
trandation (t . eul er. t).

BR_TRANSFORM LOOK_UP

Thetransformisrepresented by alook-at vector (t . | ook_up. | ook),an
up vector (t . | ook_up. up) and atrandation (t . | ook_up. t).

BR_TRANSFORM_QUAT

Thetransform is represented by a quaternion (t . quat . q) anda
trandlation (t . quat . t).

BR_TRANSFORM_MATRI X34

Thetransformisrepresented by a3x4 affinematrix (t . mat), whichisthe
most general representation.

BR_TRANSFORM MATRI X34_LP

Thetransform isrepresented by a 3x4 length preserving matrix (t . mat).

BR_TRANSFORM_MATRI X3T

Thetransform is represented by alow precision 3x4 affine matrix
(t.mat3t.mat) which is the most general representation.

br _matrix3t t.nmat3t. nmat

Thismember containsthe 3D affine matrix representing the entire transform. Itisrecommended to usethis
transform type on the PlayStation as all br _nmat ri x3t are performed using dedicated hardware.

Conversion

See the Technical Reference Manual for full details of conversion functions.

Br Tr ansf or mfoMVat ri x3t ()

Description: Convert agenerictransformtoa3D affine matrix (low precision), that would have the same
transformational effect.

Declaration: voi d Br TransfornifoMat ri x3t (br_matri x3t* mat,
const br_transfornt xform

Arguments. br _mat ri x3t

* mat

A pointer to the destination matrix to receive the conversion.
const br_transform* xform

A pointer to the source generic transform.
Effects. SeeBr Tr ansf or niToMat ri x34() .

108

Copyright O 1996 Argonaut Technologies Limited

Pl ayStati on Programr ng Tips

PlayStation Programming Tips

General Performance Issues

Thefollowing isalist of general programming issues which the applications programmer must be aware
of affecting the performance of the PlayStation.

The CPU

The host processor (CPU) is a customised variant of an R3000A running at 33.8688 MHz. It two co-
processors attached. The GTE (geometry engine) is used to accelerate certain mathematical operations
needed for 3D algorithms, and the GPU (rendering engine) operates upon primitive drawing instructions
to place pixelsinto the frame buffer.

The CPU has not floating point unit. All floating point operations are performed in
software.

The CPU has a 4KByte instruction cache, but no data cache. The instruction cache
will not act as a mixed instruction/data cache.

The CPU has an internal 1KByte of mapped memory which can be used by an
application programmer as a data cache. Instructions may not be executed from this
‘scratch pad’. This ‘scratch pad’ has one cycle read and write operations.

The PlayStation has 2MBytes of main memory installed. The CPU has no virtual memory management
hardware so the relationship between physical and logical memory isfixed. The frame buffer memory is
a 2-dimensional address space which can only be accessed by the GPU.

Main memory accessing is slow.

The GTE and GPU are clocked at a higher frequency than the CPU. They have been
optimised for certain operations and can out perform the CPU.

The co-processors rely on the CPU for movement of datato and from main memory.

Please consult the Sony Reference for further details of the PlayStation system specification.

The Main Memory

The CPUhasaread buffer (R buffer) consisting of four 4 byteregistersfor reading data. |t takesfour clock
cycles to read from memory to the R buffer with a further one cycle from the R buffer to the CPU. The
main memory is divided into 1K Byte pages. Subsequent reads from the same memory page will only take
two cycle. A page miss (reading from a new page) will require four cycles again.

It takes four cycles to load a 32 hit (dword) value into an R buffer register.
Subsequent reads from the same memory page take two cycles.
It takes one cycle to transfer data from an R buffer register to the CPU.

Copyright O 1996 Argonaut Technologies Limited 109

Pl aySt ati on Programr ng Tips

A read resulting in a page ‘miss’ (requiring a new memory page) will take
four cycles.

The CPU also has awrite buffer (W buffer) consisting of four 4 byte registers which operate as a FIFO
gueue. A write operation to the W buffer will take one cycle, so the CPU can execute a new instruction
without waiting for the write operation to memory to be completed. It takes four cycles for data to be
written from the W buffer to main memory. An instruction that causes data to be read from the address
where data in the W buffer will be written will cause the W buffer to be flushed before the instruction is
executed. The CPU will wait until aslot is available in the W buffer before writing data.

It takes one cycle to write from the CPU to the W buffer

It takes four cycles to write data from the W buffer to the main memory.

The CPU will not wait for data to be written to main memory, unless a read
instruction requires data from the W buffer before it has been committed to main
memory.

If the W buffer isfull, the CPUwill wait for data to be transferred to main memory.

To optimise memory accessing by the CPU, observe these guidelines.

Interleave read and write operations to the same memory page.

Avoid alarge number of memory writes.

Try to group related data in the same memory page.

Use an efficient memory all ocation/deall ocation scheme. Memory management will
affect performance.

The CPU Instruction Cache

The | cache (instruction cache) is used to preload instructions. The 4KByte cache is divided into 256
‘lines’, each 16 bytesin length. Each line can contain 4 instructions. When reading an instruction, the CPU
checks the | cache to seeif the instruction is present. If it is present, the CPU reads the instruction. This
takes one clock cycle. If theinstruction is not present, the CPUloads the target lineinto the cache and then
the required instruction from the cache. Thistakes between four and seven cyclesto load a cacheline, and
one cycle to load the instruction from the cache.

An | cache ‘hit’ takes one cycle
A ‘miss’ takes between five and eight cycles to load an instruction.

To minimise the frequency of cache ‘misses’, observe the following guidelines.

Keep iterative sections of code short without function callsto non-local code. Keep
relevant code within the same module.

110 Copyright O 1996 Argonaut Technologies Limited

Pl ayStati on Programr ng Tips

The CPU ‘scratch pad’

The scratch pad is 1KByte of memory in the CPU available for use by an application programmer. Read
and write operations to this memory take one cycle. Instructions may not be executed from this memory.
The scratch pad is not available for DMA transfers.

The scratch pad can be used as adata cache. Cache management is performed by the
application, not theCPU.

The C Compiler
The compiler supplied by Sony is GNU C.

Ensure C functions have no more than four arguments. The C compiler supplied by
Sony passes the first four arguments in registers, and the rest on the stack. This
means many unnecessary memory accesses.

Time critical sections of code may have to be written in assembler. Take care when
hand optimising assembler code. M1PS assembler code can be very inefficient when
instruction ordering is not optimal. If in doubt, see how the compiler generates a
similar segment of C code with full optimisations switched on.

Unless you are a confident M1PS assembler programmer, trust the C compiler to
optimise large sections of code more efficiently.

The R3000 has 32 registers. Use thisto your advantage with both C and assembler
code. For example, define local variables as:

regi ster unsigned |ong counter; /*temporary counter */

Avoid byte or word (2 byte) variable definitions. The cost of memory allocation for
dword (4byte) allocations against the time considerations for the extra code
generated by the C compiler must be evaluated.

Avoid redundant code. Remember every extra instruction will affect the execution
speed of your program in two ways. Timeis spent both executing the instruction and
the | cache performance may be badly impacted by inflated code. For example, note
the timings between unoptimised and optimised code generated by the C compiler.

Programming the CPU and co-processors

Avoid transfer between main memory and the frame buffer. Although thisis
necessary, avoid performing such transfers within time critical sections of code,
such as interrutps.

Avoid dynamic data allocation and preparation. A balance must be made between
memory all ocation and time spent generating data. Prepare as much data as possible
‘off-line’.

The GPU may be able to push pixels onto the screen very quickly, but the R3000

Copyright O 1996 Argonaut Technologies Limited 1 1 1

Pl aySt ati on Programr ng Tips

host will nearly always struggle to keep the rendering pipeline full. The GTE
performs many operations very quickly to aid the host, but memory accessing alone
can be costly when generating and transferring rendering data to the GPU.

Avoid blocking the CPU. Use call-backs and interrupts to indicate when certain
events have taken place such as vertical synchronization.

The maximum size of a GPU primitive is 64 bytes. Any primitive larger than this
will fail to be decoded correctly by the GPU due to limited buffer size.

T Cache. TheGPU texture cache is 2KBytes. Using texture map sizes which fit
within this cache will increase the performance of texture mapping (including
sprite) operations. Allow space for the clut in this cache when using 4 or 8 bit
indexed texture mapping.

Whilst it is desirable to have a different texture map on each polygon in a model,
placing one texture across many polygons will both increase texture mapping speed
and reduce memory requirements in the frame buffer. However, due to the limited
size of texel coordinates within atexture pageimposed by the PlayStation hardware,
thisis not always a simple task.

Supervise the designers and artists. However nice 256x256 16 bit texture maps are
to look at, they really don’t help. Models with lots of polygons aren’t advisable
either.

BRender Performance I ssues

Thefollowingisalist of BRender programming issues which the application programmer must be aware
of affecting the performance of the PlayStation.

112

Consult the Technical Reference Manual for a detailed explanation of the BRender
API.
Avoid manipulating the model data during time critical sections of code. To obtain
fast execution speeds, BRender pre-prepares as much model data as possible before
performing rendering operations. Any changes to material flags will only be
reflected after a Br Model Updat e() , which is atime consuming process. This
includes modifications to vertices, mapping co-ordinates, material and colour map
attributes.
Avoid unnecessary nodes in an actor hierarchy. Actors of type BR_ACTOR_NONE
may be useful to enable clear visualisation of an actor hierarchy, but each node in
the hierarchy will reduce performance.

Use custom model call-backs where possible. Extra processing may be performed
at a hierarchy node by using the custom model call-back for operations such as
sprites within the 3D world.

Do not use the Sony higher level 3D library functionsincluded in LI BGS.

LI BGTE and LI BGPU functionsand macros may be used freely in conjunction with
BRender. Use the GTE macros wherever possible.

Use a double buffered memory scheme if possible. An application will execute
faster at the expense of memory if double buffering is used.

Use an efficient memory allocation/deallocation scheme. All BRender dynamic
memory allocation can be redirected. The memory allocators supplied by Sony may
be both faulty and slow.

Do not use polygon sub-division unless absolutely necessary. Recursive sub-

Copyright O 1996 Argonaut Technologies Limited

Pl ayStati on Programr ng Tips

division is a costly process.

Try not to use lights in a scene. Pre-lit models and textures can be visually more
effective than lit models. Only models (polygons) moving relative to the light
source need to belit. Generally, alarge number of polygonsin a scene do not move
relative to the light source and so can be prelit.

Reduce the number of materials used on each model. Thiswill not only provide a
speed increase, but reduce memory requirements.

Reduce the number of modelsin a scene. A small number of models with alarge
number of polygonsis rendered faster than alarge number of models with a small
number of polygons.

Models may not be referenced more than once by actorsin a hierarchy. Although
multiple instancing of modelsis possible with BRender on other platforms, it is not
currently possible on the PlayStation.

Models must be generated from triangle polygon primitives. Quadrilateral
primitives are not currently supported.

Order tables are automatically cleared when first encountered upon hierarchy
traversal. There is no need to explicitly clear any order table used in a hierarchy.
The primary order table is used for the insertion of scenery primitives into a scene.
Use custom model call-backs for level of detail control over modelsin a scene.
Sprites are a very useful alternative for models which are too small to be
distinguished in a scene.

Use BR_ACTOR_BOUNDS and BR_ACTOR_BOUNDS_CORRECT actor type nodes
in ahierarchy to perform object culling more effectively. Discarding entire models
is more effective than individual polygons.

Use BR_TRANSFORM_MATRI X3T actor transform types wherever possiblein a
hierarchy as operations on the br _mat r i x3t matrix type are performed using
dedicated PlayStation hardware.

The error handler and file handler supplied with the example code isjust a
demonstration of how to write such systems. Feel free to re-write both systems to
suit your needs more effectively.

Examine all of the electronic documentation files included with the distribution.

BRender Programming Tips

To insert custom user rendering primitives into an order table shared with BRender primitves, it may be
necessay to reset the current texture page and texture window for the desired primitive.

struct {

br ps_draw_node node;

brps_primsprite primtive,;
} user_sprite; /*sizeof thisstruct must belessthan 16 dwords*/
brps_rectangle tw n;

Br PSRect angl eSet (& wi n, 0, 0, 255, 255);

Br PSPr i nDr awhMbdeSet (&user _sprite. nmode, 1, 0, tpage, & wn);
Br PSPri nSpriteSet(&user_sprite.primtive);

Br PSPri mver ge(&user _sprite.node, &user_sprite.prinmitive);

Copyright O 1996 Argonaut Technologies Limited 113

Exampl e M ni mal Program

Example Minimal Program

Thefollowing code is an example minimal program describing the minimum functionality required by an
application using BRender on the PlayStation. Many useful features for the applications programmer are
not present in this example for clarity reasons. See the example tutorial code for more detail .

/* Include header files needed for the Sony Libraries*/
#i ncl ude <sys/types. h>

#i ncl ude <r3000. h>

#i ncl ude <asm h>

#i ncl ude <kernel . h>

#i ncl ude <libgte. h>

#i ncl ude <l ibgpu. h>

#i ncl ude <libetc. h>

/* Include header files needed for BRender */
#i ncl ude “brender. h”
#i ncl ude “psio.h”

voi d mai n(voi d)

{
brps_draw_envi ronnent draw 2];
br ps_di spl ay_envi ronment di spl ay[2];
br_pixelmap *franme_buffer, screen[2];
br _actor *root, *canera, *light, *actor;
br _uint_8 db_i ndex;

br _uint_16 counter;

/* Initialise BRender */
Br Begi n() ;

/* Initialise PlayStation rendering and display hardware */
Br PSGeom ni t () ;

Br PSGr aphReset (0) ;

Br PSGr aphDebugSet (0) ;

/* define default double buffered drawing and display environments */

Br PSDr awkEnvi r onnment Def i ne(draw, 0, 0, 320, 240);

Br PSDr awkEnvi r onnment Def i ne(draw + 1, 320, 0, 320, 240);

Br PSDi spl ayEnvi ronnent Def i ne(di spl ay, 320, 0, 320, 240);
Br PSDi spl ayEnvi ronnment Defi ne(di splay + 1, 0, 0, 320, 240);

/* set automatic screen clear on double buffer swap */

drawf O] . cl ear _screen = draw 1].cl ear _screen = 1;
Br PSDr awEnvi r onnment RGBSet (draw, 80, 80, 180);

Br PSDr awkEnvi r onment RGBSet (draw + 1, 80, 80, 180);

/* Initialise BRender support library */
frame_buffer = PSG xBegi n(draw, display, NULL, O,

114 Copyright © 1996 Argonaut Technologies Limited

Exampl e M ni mal Program

PS_GFX_DOUBLE_BUFFER) ;

/* Obtain pixelmap pointers to double buffered screens */

screen[0] = BrPi xel mapMat ch(frame_buffer,
BR_PMVATCH_OFFSCREEN) ;

screen[1] = BrPi xel mapMat ch(frame_buffer,
BR_PMVATCH_OFFSCREEN) ;

Br PSDi spl ayMaskSet (1) ;

/* Initialise BRender z sort renderer */
Br ZsBegi n(NULL, 0);

/* Define hierarchy */

root = BrActorAllocate(BR_ACTOR NONE, NULL);

/* Transform type BR_TRANSFORM_MATRIX3T is used as operations are performed with
hardware */

root->t.type = BR_TRANSFORM MATRI X3T;
Brivatrix3tldentity(& oot->t.t.mat3t.nmat);

/* define perspective camera */

canmera = BrActorAdd(root,
Br Act or Al | ocat e(BR_ACTOR_CAMERA, NULL));

((br_canmera *)canera->type_data)->type =
BR_CAMERA PERSPECTI VE) ;

((br_canmera *)canera->type_data)->aspect =
BR_SCALAR(1.21);

((br_canmera *)canera->type_data)->hither_z =
BR_SCALAR(0. 05);

((br_canera *)canera->type_data)->yon_z = BR_SCALAR(100);

canera->t.type = BR_TRANSFORM MATRI X3T;

Br Mat ri x3t Transl ate(&canera->t.t.mt3t. mt, 0, O,
BR_SCALAR(6));

Iight = BrActorAdd(root, BrActorAllocate(BR_ACTOR LI GHT,
NULL)) ;

light->t.type = BR_TRANSFORM MATRI X3T,;

/* use a whitelight */

((br_light *)Ilight->type_data)->col our =
BR_COLOUR_RGB(255, 255, 255);

Brivatrix3tldentity(& ight->t.t.mt3t. mt);

Br Li ght Enabl e(li ght);

/* set an order table at hierarchy root */

Br ZsAct or Or der Tabl eSet (root, BrZsOrder Tabl eAl | coat e(127,
0, 0, BR_SORT_FI RST_VERTEX, BR_ORDER TABLE_ NEW BOUNDS
| BR_ORDER TABLE_SORT_NEAR));

/* allocate a model actor, using default model and inherited order table */
actor = BrActorAdd(root, BrActorAllocate(BR _ACTOR MODEL,

Copyright O 1996 Argonaut Technologies Limited 115

Exampl e M ni mal Program

NULL)) ;
actor->t.type = BR_TRANSFORM MATRI X3T;
BrMatri x3t Transl ate(&actor->t.t.mat3t.mat, 0, 0, 0);

/* main loop */
for(counter = 0; counter < 360; counter += 2) {
db_i ndex = PSG xDoubl eBuf f er | ndexRead() ;

/* Update actor in hierarchy */
Br Matri x3t Rot at eY(&actor->t.t. mat 3t. mat,
BR_ANGLE_DEQ counter));

/* Render scene*/
Br ZsSceneRender (root, canera, screen[db_index], 0);

/* Wait for drawing to finish */
DrawSync(0);

/* Wait until next frame flyback */
VSync(0);

/* Swap double buffered environments */
Br Pi xel mapDoubl eBuf fer (frane_buffer, screen[db_index]);

}

/* Terminate z sort renderer */

Br ZsEnd() ;

/* Terminate support library */
PSG xEnd() ;

/* Terminate BRender libraries*/
Br End() ;

116 Copyright O 1996 Argonaut Technologies Limited

Exampl e M ni mal Program

Copyright O 1996 Argonaut Technologies Limited 117

Exampl e M ni mal Program

118 Copyright O 1996 Argonaut Technologies Limited

